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ABSTRACT 

TAVUKCU, EMEL. Level Densities and Radiative Strength Functions in 56Fe and 57Fe. 

(Under the direction of Prof. Gary E. Mitchell.) 

Understanding nuclear level densities and radiative strength functions is important 

for pure and applied nuclear physics. Recently, the Oslo Cyclotron Group has developed 

an experimental method to extract level densities and radiative strength functions simul- 

taneously from the primary y rays after a light-ion reaction. A primary y-ray spectrum 

represents the y-decay probability distribution. The Oslo method is based on the Axel- 

Brink hypothesis, according to which the primary 7-ray spectrum is proportional to the 

product of the level density at the final energy and the radiative strength function. The 

level density and the radiative strength function are fit to the experimental primary y-ray 

spectra, and then normalized to  known data. The method works well for heavy nuclei. 

The present measurements extend the Oslo method to the lighter mass nuclei 56Fe and 

57Fe. The experimental level densities in 56Fe and 57Fe reveal step structure. This step 

structure is a signature for nucleon pair breaking. The predicted pairing gap parameter is 

in good agreement with the step corresponding to the first pair breaking. Thermodynamic 

quantities for 56Fe and 57Fe are derived within the microcanonical and canonical ensem- 

bles using the experimental level densities. Energy-temperature relations are considered 

using caloric curves and probability density functions. The differences between the ther- 

modynamics of small and large systems are emphasized. The experimental heat capacities 

are compared with the recent theoretical calculations obtained in the Shell Model Monte 

Carlo method. Radiative strength functions in 56Fe and 57Fe have surprisingly high values 

at low y-ray energies. This behavior has not been observed for heavy nuclei, but has been 

observed in other light- and medium-mass nuclei. The origin of this low y-ray energy 

effect remains unknown. 
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lCHAPTER1I 
Introduction 

Nuclei are complex quantum mechanical systems. A complete description of nuclear struc- 

ture is contained in the nuclear wave function. However, it is essentially impossible to 

derive nuclear wave functions from first principles. This is partly because the knowledge 

of the strong nuclear interaction is still limited. However, even if the strong nuclear force 

were completely known, it would still be desirable to develop simplified models containing 

essential nuclear features. The nuclear shell model and its extension to deformed nuclei, 

the Nilsson model, are two models used to explain the singleparticle behavior of nuclei 

as well as some “collective” effects. Other models have also been developed to account for 

collective nuclear behavior. 

One important nuclear property is the nuclear level density. Level densities are 

crucial for the study of nuclear reactions. Applications include astrophysics, the study of 

nuclei far from the stability line, and stockpile stewardship. The first theoretical attempt 

to describe nuclear level densities was by Bethe in 1936. In his fundamental work, Bethe 

described the nucleus as a gas of noninteracting fermions moving freely in equally-spaced 

singleparticle orbits. The level density was determined by calculating the entropy from 

Fermi statistics. Bethe’s formula was later modified in order to account for other nuclear 

features, such as shell effects and residual interactions. Recently the level density problem 

has been treated with a variety of modern methods. The shell model Monte Carlo (SMMC) 

method seems promising in calculating level densities while explicitly predicting parity and 

1 
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angular momentum dependence of level densities. 

Pairing correlations in odd-A and in particular in even-even nuclei also affect the 

level density at low excitation energies. At low temperatures nucleons are paired off in 

time-reversed orbits. An important consequence of this pairing effect is the energy gap 

between the ground state and the lowest two-quasiparticle excitation in even-even nuclei. 

This effect manifests itself in the level density as a rapid increase in the number of levels 

above this energy gap. 

Nuclear level densities are also important to infer nuclear thermodynamic properties. 

Thermodynamic quantities have been used to investigate phase transition phenomena in 

nuclei. Heat capacities have been calculated theoretically for several iron isotopes within 

the SMMC model, and shown to reveal a signature for a pairing “phase transition”. An 

S-shaped structure in the heat capacity curve derived from experimental level densities 

has been interpreted as a transition from a phase with strong pairing correlations to a 

phase with weaker pairing correlations. 

The radiative strength function (RSF) is another important nuclear property. Most 

experimental information on RSFs has been obtained from photonuclear reactions. Direct 

observation of giant dipole resonances in photonuclear reactions led to resonance models 

for the RSF. Within this model the electric field of the photon acts only on protons, and 

the neutrons and protons move in opposite directions while keeping the center of mass 

at rest. However, extensive experimental information on RSFs, particularly at low y ray  

energies, are necessary in order to verify and/or improve these models. 

Recently, a method to extract both the level density and the radiative strength 

function has been developed by the Oslo Cyclotron group. This Oslo method employs the 

experimental primary y-ray spectra from all excitation energies as a starting point, and 

is based on the Axel-Brink hypothesis. The Oslo method has been shown to work well in 

the rare-earth nuclei. 

Extending the Oslo method to lower mass regions was the primary motivation of 

this dissertation. Astrophysical interest and the recent theoretical prediction of pairing 

phase transitions in the iron isotopes led us to study the 56Fe and 57Fe isotopes. 



3 

This thesis consists of seven chapters and four appendices. Historical background 

on level densities and radiative strength functions, and an introduction to thermodynamic 

quantities and statistical ensembles are given in the following chapter. In Chapter 3 

the method to extract the level density and radiative strength function simultaneously is 

described, error calculations, and normalization procedures are discussed, and the appli- 

cation of the method to simulated theoretical data and to the present experimental data 

is presented. Chapter 4 includes experimental details. In the next chapter the analysis 

of the experimental data is described, including unfolding the total y-ray spectra and 

extracting primary -pray spectra for all excitation-energy bins. Chapter 6 contains ex- 

perimental results on level densities and radiative strength functions on 5sFe and 57Fe. 

Thermodynamic properties derived from the level densities are presented, and compared 

with corresponding theoretical calculations. This is followed by a short overview on earlier 

results on rare-earth nuclei using the Oslo method. Chapter 7 summarizes the conclusions 

of this work, and provides suggestions for future research. Mathematical details are given 

in the appendices. In Appendix A transformation functions, which give all solutions of 

the primary y-ray matrix, are derived. Appendix B contains mathematical derivations 

of the least x2 method, which provide the formulae to calculate new level density and 

7-ray transmission coefficient estimates in the iterative procedure by minimizing the re- 

duced x2. Appendix C describes an area correction method, which reduces possible errors 

in obtaining the primary y r a y  spectra. In Appendix D caloric curves are derived from 

the probability density function for simple large and small systems. Some difficulties in 

applying thermodynamic methods to small systems are emphasized. 



l C H A P T E R 2 1  
Level Densities, Thermodynamics, 

Radiative Strength Functions 

2.1 Level Densities 

Besides their fundamental importance in nuclear structure, nuclear level densities are the 

basic input parameters in nuclear reaction theory. Calculations of neutron- and proton- 

capture reaction rates in nuclear astrophysics require knowledge of the level densities. 

There are many other applications of level densities, including accelerator-driven trans- 

mutation of nuclear waste and radiochemical analysis. 

Experimental level densities are usually obtained from direct counting at low exci- 

tation energies (E, 5 5 MeV) [l], from study of neutron and proton resonance data [2], 

from charged-particle evaporation spectra at intermediate energies (5 2 E, 2 15 MeV) 

[3, 41, and from Ericson fluctuation analysis at high excitation energies (E, 2 15 MeV) 

[31. 

Most of these experimental data have been interpreted within the framework of 

Bethe’s pioneering Fermi-gas model (51 which gives the energy-dependent level density 

P(E) as 

4 
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where (T is the spin cutoff parameter, a is the level density parameter given by a = 

g ( g p  + gn), and g p  and gn are the single-particle level density parameters for protons 

and neutrons, respectively, which is expected to be proportional to the nuclear mass A,  

In this model, particles are considered to move independently, and single-particle states 

are assumed to be equally spaced. As a result of these assumptions, the nuclear partition 

function is written as a product of the individual partition functions of constituent nucle- 

ons. Then the level density is obtained by the inverse Laplace transform of the partition 

function. The Bethe formula predicts an exponential increase in the number of levels with 

excitation energy and atomic mass. This is qualitatively consistent with the experimental 

data. However, due to the independent-particle and equidistant-level assumptions, this 

formula does not take into account, e.g., odd-even and collective effects. Therefore, vari- 

ous phenomenological modifications of this simple formula have been proposed in order to 

account for these effects. These new approaches introduced some free parameters in order 

to fit the existing experimental data while approximately keeping the functional form of 

the energy dependence. In the shifted Fermi-gas model, the odd-even effects are included, 

i.e., the effective excitation energy is reduced by the conventional pairing energy for the 

odd-mass and even-even nuclei, resulting in a lower level density for the same excitation 

energy. The standard form is 

where U is the excitation energy shifted by the pairing energy, and f(J) gives the spin 

distribution of the levels 
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(2J + 1) 
2 0 2  f(J) = 2$ 

The so-called spin cutoff parameter o is approximately equal to the mean value of the 

spin distribution at a given energy, and expressed as 

a2 = Q.0888dZA2f3 .  

Gilbert and Cameron proposed a composite level-density formula which combines a 

constant temperature formula (CTF) 

for low energies, and the shifted Fermi-gas model at higher excitation energies [6]. The 

free parameters introduced by this model are fitted to experimental data at low and high 

excitations in order to give better absolute values of the nuclear level densities. Another 

approach, the back-shifted Fermi-gas model (BSFG), was later proposed in order to ac- 

count for collective and shell effects. In this model, the level density parameter a and 

the energy shift are considered as free parameters, which allows a reasonable fit to the 

experimental level densities over a wider range of excitation energies. Later, other phe- 

nomenological methods were developed to describe the thermal-damping of shell effects, 

i.e., the energy dependence of the parameter a (e.g., [7, 8, 91). 

All of these approaches are semiempirical and based on experimental data. Reason- 

able agreement with the experimental data was obtained by introducing new parameters 

to the original Bethe formula. However, the dependence of these parameters on mass 

number, excitation energy, and shell effects makes their determination difficult. 

Alternatively, numerical statistical calculations have been performed using the usual 
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independent-particle model, and including BCS theory in order to account for pairing 

effects [lo, 111. A combinatorial method was also introduced which calculates the level 

density numerically by counting nuclear excited configurations [ 12, 13). However, this 

method requires long computational time, particularly for high excitation energies and for 

large shell model spaces. The residual interactions were taken into account in spectral 

distribution method [14, 151. This approach is based on expanding the basis states in 

terms of the Hamiltonian eigenfunctions; then the corresponding intensity as a function 

of the Hamiltonian eigenvalues is a spectral distribution. The averaged distribution of the 

Hamiltonian eigenvalues is calculated by studying the energy moments of this distribution. 

This method is limited to a low-order expansion, which does not give accurate results for 

large shell model spaces. As an alternative to the traditional combinatorial method, a 

Monte Carlo method was proposed by Cerf [16] in order to avoid the exhaustive counting 

of the excited levels. 

Recently, a variety of methods have been developed, which include relativistic mean 

field theory [ 171, finite temperature random phase approximation [ 181, finite temperature 

Hartree-Fock-Bogoliubov method [19], continuous binomial function method [20], and shell 

model Monte Carlo method (SMMC) [21, 22, 231. 

2.2 Thermodynamics, Statistical Mechanics 

Phenomenological thermodynamics and statistical mechanics have been effective 

tools to study macroscopic systems in equilibrium. In thermodynamics, the system is 

described from a macroscopic point of view by introducing appropriate quantities such as 

volume, pressure, and temperature. However, since there are a large number of constituent 

particles in a macroscopic system, in general it is difficult to derive thermodynamic prop- 

erties of any given system from its corresponding microscopic description (the methods 

of quantum mechanics or classical mechanics). On the other hand, a large number of 

particles makes it easy to treat the problem through statistical methods. Thus statisti- 

cal mechanics aims to describe a specific system at the microscopic level from the laws of 

molecular dynamics, and to derive or predict the laws of thermodynamics from microscopic 
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considerations. 

In thermodynamics a macroscopic system is described by equations of state, which 

give a functional relationship among thermodynamic variables for the system in equilib- 

rium. Although microscopic changes do not appear explicitly at the macroscopic level, 

their effects are incorporated in a macroscopic quantity entropy S 

d Q  = T d S ,  (2.6) 

where T is the temperature of the system, and d Q  is the heat absorbed by the system. 

The concept of equilibrium is linked closely to the idea of temperature. The definition 

of equilibrium is the equipartition of the available energy among all degrees of freedom. 

Therefore, temperature is one of the variables that characterizes systems in equilibrium. 

A system in equilibrium must satisfy either the entropy-maximum principle (for a given 

energy) or the energy-minimum principle (for a given entropy). These principles can 

be rewritten in terms of thermodynamic potentials so that intensive variables, such as 

temperature, can be treated as independent variables. For example, consider a system of 

fixed volume in contact with a heat reservoir at a constant temperature T.  In thermal 

equilibrium the temperature of the system is equal to the temperature of the surroundings, 

i.e., (BE/BS)V,N = T (see Eq. 2.6). Alternatively a potential, the secalled Helmholtz 

potential or Helmholtz free energy, can be defined such that 

F = E - T S ,  (2.7) 

from which the equilibrium condition reduces to minimizing the Helmholtz potential: 

(BF/BS)V,N = 0. Using the first law of thermodynamics 
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dE = dQ+dW 

= T d S - P d V  

one obtains 

dF = -SdT - PdV. (2.9) 

The entropy in the first term of this equation tends to increase disorder in the system, 

while the second term tends to keep the system in order. The Helmholtz potential is more 

convenient to use in many practical situations. Thermodynamic functions such as pressure 

P and entropy S can then be obtained from F ( T ,  V, N )  in Eq. 2.9 

P = - ( ~ F / ~ V ) T , N  

S = - (BF/W)V,N.  (2.10) 

Another thermodynamic quantity is the heat capacity Cv, which is a measure of 

the response of the system to changes in its temperature 

Cv=(%) V. N 7 (2.11) 

at constant volume and particle number N .  We can also express heat capacity in terms 

of the Helmholtz potential using Eqs. 2.6 and 2.10 

(2.12) 



10 

These relations for thermodynamic quantities are used to make the connection between 

statistical and thermodynamic descriptions of systems in equilibrium. 

In order to describe a system from microscopic considerations, the basic rule is the 

postulate of equal apriori probabilities: if an isolated system is in equilibrium, the system 

is equally likely to be in any of the accessible states. If R(E, N )  represents the number of 

states of the system with fixed volume V and particle number N that lie in the vicinity 

( A E )  of energy E ,  then the probability Pi of the system to be in a specific microstate i will 

be l /O.  The term 'probability' is, in general, used to indicate recurrence of an event when 

measurements are repeated a large number of times. In order to use this interpretation, 

the concept 'ensemble' is introduced in statistical mechanics. An ensemble is a large 

number of identical systems whose macrostates are the same, and whose microstates are 

distributed with equal apriori probability. 

There are three commonly-used ensembles in statistical mechanics: Microcanoni- 

cal, canonical, and grandcanonical ensembles. All three ensembles give the same result 

in describing systems in the thermodynamic limit. Here, microcanonical and canonical 

ensembles are relevant, and will be discussed at some length. 

2.2.1 Microcanonical Ensemble 

A microcanonical ensemble consists of isolated physical systems with fixed particle 

number N ,  and with energy E within a small uncertainty AE << E. The microstates of 

the systems are distributed according to the postulate of equal apriori probability. The 

number of microstates R(E, N )  is proportional to the density of states such that 

R(E, N )  = p(E,  N )  x AE.  (2.13) 

It is also convenient to introduce the microcanonical partition function, the entropy of the 

system, which makes the connection between the microcanonical ensemble and thermo- 

dynamics, by 
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S ( E ,  N )  = k g  lnn(E,  N )  

= kBlnp(E,N) -I- kBlnAE, (2.14) 

where k g  is Boltzmann’s constant. All of the thermodynamics of a system can be obtained 

from Eq. 2.14. For example, temperature in the microcanonical ensemble is defined as 

(2.15) 1 dS(E,N)  _ -  
T -  O E  ’ 

This equation gives the relation between the temperature and energy of the system, and 

is called the caloric curve in the microcanonical ensemble. 

2.2.2 Canonical Ensemble 

When a physical system is in thermal equilibrium with a heat reservoir at constant 

temperature T and can exchange energy (but not particles) with the reservoir, the en- 

semble of such systems is called a canonical ensemble. Analogous to the entropy in the 

microcanonical ensemble, the partition function is the starting point to obtain the ther- 

modynamics of a system in the canonical ensemble. Suppose that the physical system A 

and the reservoir R together constitute an isolated composite system. The probability Pi 

of finding the system A in one particular microstate i of energy Ei can be found using the 

postulate of equal apriori probability since the composite system is isolated. 

If Eo represents the total energy of the composite system A + R, then the number 

of states accessible to A + R is proportional to the number of states R,(Eo - E,) accessible 

to the reservoir. Therefore, 

Pi = constant x C&(Eo - Ei), (2.16) 
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where the proportionality constant is determined by normalization. Since A << R and 

E, << EO, lnRi(E0 - Ei) can be expanded into a Taylor series 

Then p, defined as 

8 In Ri 

(2.17) 

(2.18) 

is a characteristic of the reservoir. Using Eqs. 2.14 and 2.15, ,E' = ~ B T  where T is 

the temperature T of the reservoir. Since A is in thermal equilibrium with the reservoir, 

T is also the temperature of the system A.  Then the number of accessible states to the 

composite system A+ R is approximated by truncating the Taylor expansion at the second 

term (first order term) 

R ~ ( E O  - ~ i )  Ri(Eo)e-PEi (2.19) 

Thus the probability Pi is proportional to e-PEi, or after normalizing the probabilities for 

all possible states i to one, i.e., xi Pi = 1, one obtains 

(2.20) 

where 

= c e--PEi 
a 

(2.21) 
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is called the partition function, which is the sum of the exponential factor e-pEi over all 

states i. The partition function can also be defined as the volume in phase space occupied 

by the canonical ensemble. If the states form a continuum, then the summation in Eq. 

2.21 becomes an integration. 

Alternatively, the partition function can be written as 

(2.22) 

where one can first sum over all the a ( E )  states in the energy range between E and 

E + AE and then perform the summation over all such possible energy ranges. Note that 

the probability that a system has energy E is P ( E )  o( !2(E)e-pE, while the probability 

that a system is in a state i of energy Ei is Pi oc e-PEi. Since R(E) is an increasing function 

of E ,  and e-PE is an exponentially decreasing function of E ,  the product R(E)e-PE has a 

maximum. The energy of the maximum ,!? is then the most probable energy of the system. 

If the maximum at is very sharp, then the partition function can be approximated by 

2 M S1(,!?)e-f18, and 

In z x In Q(E)  - PE.  

If we assume that E = ( E ) ,  then kgTln 2 = T ( S )  - ( E ) ,  or 

(2.23) 

F = ( E )  - T ( S )  = -kBTlnZ. (2.24) 

For a system in the canonical ensemble, one obtains the Helmholtz free energy from 

the partition function, which is obtained by summing over all possible states. On the other 

hand, for a system in the microcanonical ensemble, one derives the entropy by counting the 

number of accessible states. In thermodynamics, one uses the principles of minimization 
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of Helmholtz free energy and maximization of entropy, respectively, in these two different 

Cases. 

The caloric curve in the canonical ensemble is given by 

2a1n.Z E = T  - r n '  (2.25) 

The caloric curves for the canonical and microcanonical ensembles give similar results in 

the thermodynamic limit. However, they may differ considerably for small systems such 

as a nucleus. The caloric curves for small systems are discussed in detail in Appendix D. 

2.3 Radiative Strength Functions 

The radiative strength function (RSF) is considered a measure of the average elec- 

tromagnetic nuclear properties. The RSF is important for understanding both nuclear 

structure and nuclear reactions. The transmission coefficients TXL for y-ray transitions 

with energy E, and multipolarity X L ,  which enter in reaction model calculations, are 

proportional to the corresponding strength functions f x L  

TxL(E,) = 2.rrE:L+1 f x ~ ( E , ) .  (2.26) 

Th RSF was first estimated by Weisskopf in 1951 [24]. This estimate wa based on 

an independent-particle model, and a single proton was assumed to be responsible for the 

transition. This energy-independent model is also known as the single-particle model. 

Blatt and Weisskopf [25] also showed that the square of the y-ray transition matrix 

element connecting compound states is proportional to the level spacing of the initial states 

with equal spin and parity. This led to a new description of the RSF for a transition of 

multipolarity XL from an initial state i to a final state f in terms of the average partial 

radiative width (I',if), level spacing D; of the initial states, and transition energy E, 
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(2.27) 

The RSF of a nucleus is the sum over the strength functions fxL  of all possible 

multipolarities L and electric and magnetic type X .  In general, all multipolarities and 

multipole types contribute, but the y-ray emission probability with electric character is 

a factor of lo2 higher than the one with magnetic character. Furthermore, the photon 

emission with a multipolarity L + 1 is less probable than the photon emission with a 

multipolarity L by a factor of Thus the El and M1 strengths contribute most to 

the RSF. 

Most experimental information on RSF has been obtained from the study of pho- 

toabsorption cross sections [26,27]. Other methods involve investigation of primary y rays 

of different multipolarities [28] and two-step 7-ray cascades following thermal neutron cap- 

ture [29, 30,311. However, these experimental methods provide radiative strengths mostly 

for high-energy transitions. It is difficult to measure the RSF between highly excited 

states because of the high level density. Therefore there is a serious lack of experimental 

information on the low-energy radiative decay strength. 

2.3.1 El Strength Function 

The simplest model for the El photon strength is the energy-independent single- 

particle model [24], and is given by (in units of cgs) 

(2.28) 

where e is the effective charge of a particle in a system of particles (for a neutron e = - Z / A  

times the proton charge [32]), R is the nuclear radius, D, is the spacing of the single- 

particle states with I = 0, and C = 6.8 x MeV2.  A large amount of experimental 

data showed that the single-particle model overestimates the experimental El strength 
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function [33]. 

A more realistic approach makes use of the giant electric dipole resonance (GEDR). 

Giant dipole resonances are directly observed in photonuclear reactions. The principle of 

detailed balance [33, 341 for the ( n , ~ )  and (7,n) reactions, together with the assumption 

of the spin independence of the photon strength function, leads to the Lorentzian GEDR 

radiative strength function 

(2.29) 

where U E ~ ,  I'El, and E E ~  are the standard giant electric dipole resonance parameters. 

This equation is valid for spherical nuclei. For deformed nuclei, the experimental data can 

be represented using a radiative strength function given by the sum of two Lorentzians. 

Giant dipole resonances are most simply understood as the oscillations of neutrons 

against protons in the nucleus. The supposed independence of this collective motion from 

the intrinsic nuclear excitations leads to the important consequence (Brink's hypothesis 

(341) that the giant resonances built on the ground state are similar in shape and size to 

those built on any excited state. A consequence of the Brink hypothesis is that the radia- 

tive strength function depends only on the energy of the transition, and is not dependent 

on the excitation energy. 

Measurement of the primary El  radiation indicates that the GEDR model describes 

the experimental data much better than the single-particle model. Nevertheless, this model 

seems to be inadequate at energies close to the neutron binding energy [35]. 

It was also assumed that the tail of the Lorentzian describing the GEDR determines 

the strength function at lower energies. The only experimental data on the El strength 

function between compound states with T-ray energies below 2 MeV have been obtained 

from the (n,-ya) reaction [36]. These data have shown that extrapolation of the GEDR 

fails to describe the experimental values of the El  strength function, and gives a finite 

value of the El strength in the limit E-, + 0. As a result, more detailed models for the El  
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strength function were proposed by Zaretskij and Sirotkin [37], KadmenskiY, Markushev, 

and Furman (KMF) [38], and Sirotkin [39]. These models rely on the theory of Fermi 

liquids and assume an energy and temperature dependent damping width of the GEDR 

where the nuclear temperature for thermal neutron capture is 

(2.30) 

evaluated from the relation 

T =  J- (2.31) 

with A the pairing energy (equal to zero for odd-odd nuclei), and a the Fermi-gas level 

density parameter. The strength function is given by 

(2.32) 

The KMF model is frequently used in the description of experimental data, but needs 

further experimental verification. 

2.3.2 M1 Strength Function 

As in the case of the El strength function, the singleparticle model was the first 

model developed for the M1 strength. Later, the M1 strength function was also thought to 

be related to a corresponding giant resonance (see, e.g., Ref. [40]), which can be interpreted 

as the collective motion of spin-up nucleons against spin-down nucleons. This model 

is called the giant M1 dipole resonance (GMDR) or spin-flip resonance [40, 411. The 

resonance parameters are usually taken from the global parameterization [42], which are 

E-, = 41A-'I3 MeV, I'M1 = 4 MeV, and the value of C T M ~  is usually adjusted to fit 

experimental data at the neutron binding energy. The analysis of the primary 7 rays from 
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(n, 7) reactions [28] indicates that for Ml  radiation the GMDR model fits the experimental 

data better than the single-particle model. 

The other magnetic dipole mode is the weakly collective isovector M1 orbital reso- 

nance or the scissors mode (SM) [43, 441, and was first discovered in the heavy deformed 

nucleus 156Gd in an (e,e') experiment [45]. In contrast to certain electric excitations, 

magnetic excitations are weakly collective excitations. 

An anomalous bump found in the y-ray spectra of (n,y) and ( d , p y )  reactions [46, 

47, 48, 49, 501 has drawn special attention recently. This bump, also called a pygmy 

resonance, was also observed in the rare-earth nuclei in (3He,a) reactions [51, 52, 531. 

Ongoing interpretations involve two possible characterizations of the pygmy resonance: 

An enhancement of the El strength function or M1 character connected to orbital M1 

strength - the scissors mode. A recent (n,2y) experiment is expected to determine the 

character of the pygmy resonance in 172Yb. 



/ C H A P T E R 3 1  
Method to Extract Level Density and 

Radiative Strength Function 

Simultaneously 

3.1 Introduction 

The method to extract simultaneously the level density and the radiative strength function 

(or y-ray strength function) relies on the primary y-ray spectra [54]. A primary 7 ray is 

the first y ray emitted from a level which is populated in a reaction. Details of the s+called 

subtraction method to obtain the experimental primary y-ray matrix P(Ei, E-,) are given 

in Chapter 5; at this stage we will just assume that we are provided with this matrix. 

The P(Ei,E,) matrix is a two-dimensional matrix, one axis is the excitation energy Ei 

and the other axis is the primary y-ray energy E-,. Due to low statistics, the excitation- 

energy axis in this matrix is divided into 238-keV wide bins. As a result, the extracted 

level density represents the average density of levels per 238-keV energy. By projecting an 

excitation energy Ei bin onto the E-, axis, a primary y-ray spectrum is obtained for that 

excitation-energy bin. The energy distribution of the primary y rays provides information 

on both the level density and the radiative strength function. 

If the primary 7-ray spectrum is normalized to unity at each excitation energy, it 

19 
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represents the decay probability. Thus, the sum over the probabilities of emitting y rays 

from a minimum energy E T  to a maximum energy Ei from a specific excitation energy 

Ei bin is set equal to one 

P(Ei,E,) = 1. 

Figure 3.1 displays the normalized experimental P(Ei, E;) matrix. Each pixel rep- 

resents one matrix element, which gives the probability of emitting a y ray at the corre- 

sponding excitation energy. The matrix elements below E, = 4 MeV of excitation energy 

are eliminated from the matrix since in this region the reaction is more likely to be direct 

than compound. Reactions other than compound nuclear violate the the main assumption 

of the subtraction method. The matrix elements below E, = 1.5 MeV are also excluded 

due to (i) electronic issues and (ii) problems associated with the subtraction method in 

obtaining the primary y-ray spectra for low-energy y rays. For example, the yrast y rays 

are usually not properly subtracted, and any change in the spin population distribution 

between high and low excitations is not accounted for in the subtraction method. 

3.2 Ansatz 

3.2.1 Axel-Brink Hypothesis 

The experimental normalized P(Ei, E,) matrix is factorized according to the Axel-Brink 

hypothesis [34, 331, which states that the decay probability of a y ray from an excitation 

energy Ei to a final energy Ej is proportional to the product of the y-ray transmission 

coefficient T and the level density p at the final level energy 

The final energy Ej  is given by the initial excitation energy minus the emitted y-ray energy, 

as shown in Fig. 3.2. According to this hypothesis, the P(Ei,E,) matrix is proportional 
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Figure 3.1: Normalized experimental primary y-ray matrix for 5sFe. 

to two functions of one variable: The y-ray transmission coefficient is a function only of 

the y-ray energy E,, and the level density is a function only of the final excitation energy. 

The function T(E,) is given by the sum over all radiative strengths fx~(E,) weighted 

with y-ray energies with multipolarities X L ,  

(3.3) 

A schematic representation of the P(Ei,E,) matrix, shown in Fig. 3.3, helps to 
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Figure 3.2: Statistical decay in the continuum energy region. The final 
energy is given by E! = Ei - E,. 

illustrate the application of Eq. 3.2 on the P(Ei,E,) matrix elements. Each black dot 

represents one matrix element. Also notice that the maximum energy of a y ray emitted 

from a level is equal to the corresponding level energy. If Eq. 3.2 is written for each 

matrix element, then the matrix elements along the vertical lines in Fig. 3.3 depend on 

the function T at the same y-ray energy and the matrix elements along 45" depend on the 

function p at the same final excitation energy. Thus the experimental P(Ei,E,) matrix 

elements are correlated with each other through the functions p and T. 
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Figure 3.3: Schematic illustration of primary y-ray matrix. 

3.2.2 

In order to fulfill Eq. 3.1, the right-hand side of Eq. 3.2 must be normalized to one at 

each excitation energy Ei. This gives 

Normalization of Eq. 3.2 at each E, 

The two assumptions given by Eqs. 3.2 and 3.4 are the two physical inputs in this method, 

from which we would like to determine p and T.  

Unfortunately, neither T nor p is known a priori. Due to the functional form of 

Eq. 3.4, the number of solutions is infinite. We derive T’s at all y-ray energies and 

p’s at all excitation energies by applying a least x2 fit to the primary y-ray data. These 

derived T’s and p’s together represent one solution that describes the primary y-ray matrix. 

The solution obtained from this method is not necessarily the most physical solution. 

Therefore, we normalize the solution to known experimental data in order find the most 

probable solution. This normalization procedure is based on finding all other solutions 

from one arbitrary solution. Next, we describe how to find the other solutions, the least 
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x2 method, and the normalization procedure [54]. 

3.2.3 Other Solutions of the Primary y-ray Matrix 

Let j j  and T be another solution of the P(Ei, E,) matrix, chosen as 

(3.5) 

where the p and T together are one arbitrary solution obtained from the x2 minimization, 

and g(Ei - E,) and f(E,) are the transformation functions to be determined. Then, the 

solution jj and 5? must satisfy Eq. 3.4 such that 

Thus 

By using this equation the transformation functions g and f are derived in Appendix 

A. Other solutions of Eq. 3.4 are then determined from the transformation equations given 

bY 

where A, B,  and a are free parameters. The transformation equations provide all other 
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solutions from one arbitrary solution by adjusting the free parameters A,  B, and a. In 

other words, all solutions that describe the P(Ei, E,) matrix with equal x2  are related to 

each other by an exponential function, and thus by knowing one of the solutions one can 

compose all of the other solutions by choosing appropriate parameters A,  B,  and a. Thus 

the method involves finding one solution and comparing it to known experimental data 

by employing Eq. 3.8. 

3.3 Method 

One solution to Eq. 3.4 can be found by applying a least x2  method. The reduced x2 is 
defined as 

where NfTee is the number of degrees of freedom, and is found by 

Nfree = ch(P) - &(/I) - ch(T). (3.10) 

where ch indicates the number of data points in the respective spectra. ch(P) is simply 

the area of the primary y-ray matrix, shown in Fig. 3.1, and ch(p) and ch(T) are the 

number of excitation-energy bins. Then the reduced x2 is minimized with respect to T at 

every y-ray energy, and with respect to p at every excitation energy according to 

(3.11) 

a x2 = 0. 
aP(Ea - E,) 

(3.12) 
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If we denote the number of excitation-energy bins by n, which is also equal to the number 

of ET bins, there are a total of 2n equations, n equations from 3.11 and n equations 

from 3.12. However, only 2n-3 of these equations are independent. Thus, there are 2n-3 

equations, but 2n unknowns. Since these equations are not a linear system of equations, 

they cannot be solved analytically. One must solve them numerically by introducing three 

arbitrary values for p and/or T .  Thus by the choice of these three values arbitrarily each 

time we obtain a different solution. As proven with the transformation equations, again we 

see that the correct solution can be obtained only if we introduce three variables correctly. 

The set of equations obtained from the x2 minimization is very tedious to solve. 

Therefore, an iteration procedure is implemented in the program called RHOSIGCHI. 

The program starts with an arbitrary solution, and in each iteration calculates a new p 

and T using values from the previous iteration and the x2. The iteration continues until 

the x2 is minimized. 

3.3.1 Zeroth-order Estimate 

Since the choice of one solution is completely arbitrary in the transformation equations, 

we can chose a solution which is convenient as a starting point. Thus p(O) = 1 is chosen as 

a zeroth-order estimate. Then, the zeroth-order estimate for T(o)(E,)  is calculated from 

Eq. 3.4 

(3.13) 

Summing over all of the excitation energies gives 

The sum on the right-hand side can be set to unity for convenience, then one obtains 
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(3.15) 

3.3.2 Higher-order Estimates 

The derivation of the higher order estimates from the x2 minimization (see Eqs. 3.11 and 

3.12) is tedious and is given in Appendix B. They are 

(3.16) 

where 

(3.18) 

(3.19) 

and 



28 

(3.20) 

The iteration process starts with the zeroth-order estimates p(O) and T(O). These 

estimates are kept the same for the level density at all of the excitation energies and for 

the y-ray transmission coefficient at all of the y-ray energies. Within one iteration, first 

a(Ei ) ,  b(Ei), and s(Ei) are calculated using the estimates for p and T from the previous 

iteration. Using these functions, the matrices cp(Ei, E?) and $(Ei, E,) are calculated. 

Then new estimates for p and T are calculated using Eqs. 3.16 and 3.17. Figure 3.4 shows 

how the summations in Eqs. 3.16 and 3.17 are performed. The shaded areas are usually 

excluded from the matrix. In this figure, the region of E, < 1 MeV and Ei < 4 MeV is 

excluded. If the --pray energy is between 1 and 4 MeV, the sum in calculating the F(E,) 

starts from Ei = 4 MeV (upper left panel of Fig. 3.4). If E, > 4 MeV, the sum starts from 

Ei = E, (upper right panel). Similarly, if the final excitation energy in calculating the 

level density p ( E f )  falls between 3 MeV and B, - 1 MeV, the sum starts from E j  + 
(lower left panel). If Ef  < 3 MeV, the sum starts from E T n  = 4 MeV. 

3.4 Convergence Properties 

The x2 for most data points converges within 10 iterations, where the maximum number 

of iterations is set to 50. However, some data points, usually those with high E, and Ei 

energies which have fewer counts, may oscillate between two values without converging. 

In order to improve the convergence properties the maximum variation for the functions 

p and T is restricted within one iteration to a certain percentage p .  If the variation lies 

outside 
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Figure 3.4: 
3.17. 

Schematic illustration of performing the sum in Eqs. 3.16 and 

old < new 5 old x ( 1  +p/ lOO)  1 + p / 1 0 0  - (3.21) 

then the value is set to the closest boundary. A small p would increase the convergence 

properties, but also the execution time. A large p would decrease the execution time, but 

affect the accuracy of the solution. Therefore, the percentage p is implemented such that 

it becomes smaller as a function of the number of the iterations, as listed in Table 3.1. 
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The value of p can be changed since the reliability of the method does not depend on the 

choice of the value of p .  

Table 3.1: Percentage p as a function of the number of iterations. p 
decreases from 20% to 1% . The maximum variation that any point can 
have within 50 iterations is approximately a factor of 11. 

Iteration p Number of Max. variation 
iterations 

1-5 20 5 1.25 M 2.49 
6-12 10 7 1.17 M 1.95 

31-50 1 20 1.0120 M 1.22 

9 1.059 M 1.55 
22-30 2.5 9 1.0259 M 1.25 
13-21 5 

= 50 n M 11.46 

3.5 Error Calculations 

Error estimation for the functions p and T is very difficult, and requires first finding 

the error in the primary y-ray matrix P(Ei,E,) .  This matrix is obtained from the raw 

data after the unfolding and subtraction procedures. The error propagation through 

these methods is very tedious and has never been performed. Therefore, the error in the 

P( Ei, E,) matrix is calculated by a different procedure: 

A P  = 2J(M1+ M2)P, (3.22) 

where MI is the multiplicity of the first- and higher-order y rays, and M2 is the multiplicity 

of the second- and the higher-order y rays at one excitation energy. These multiplicities 

are roughly given by 

A41 = max(l,M(Ei)) 

A42 = max(O,M(Ei) - 1) (3.23) 
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The multiplicity M(Ei )  is obtained by a fit to the experimental data in Ref. [55] 

M(Ei )  = 0.42 + 4.67 x 10-4Ei - 1.29 x lo-*@, (3.24) 

Ei is given in keV. The motivation behind Eq. 3.22 is as follows: The number of counts in 

the primary y-ray spectrum is of the order of MlP,  and in the second- and higher-order y- 

ray spectrum is of the order of M2P. The errors in these spectra are approximately 

and e, respectively. Since the primary y-ray spectra are obtained by subtraction of 

these two spectra, the error in the primary y-ray spectrum is calculated from the error 

propagation assuming that these errors are independent, which gives ,/(MI + M2)P. The 

factor of two is included in Eq. 3.22 due to the uncertainty in the unfolding procedure. 

This factor is roughly calculated from the ratio of the solid angle covered by the CACTUS 

detector array (15%) to its photopeak efficiency (7%). In addition, two minor corrections 

must be considered. 

The errors for low-energy y rays need to be increased since the spin effect is consid- 

ered to be larger for low y-ray energies. This is performed as follows: For each excitation 

energy bin, the channel with the maximum number of counts, denoted by xm, is identified 

(this channel usually corresponds to a y-ray energy between 2 and 3 MeV). This channel 

also has the highest error am. Then the errors for the channels below xm is replaced by 

(3.25) 

This formula has been tested on several primary y-ray spectra, and gives reasonable sys- 

tematic errors. 

The second correction is due to the unfolding procedure. The ratio of the photopeak 

efficiency to the solid angle covered by the NaJ(T1) detectors decreases for high y-ray 

energies; thus the counts at these energies are multiplied by significant factors in the 

unfolding procedure. Since some channels at high energies might have very few or zero 
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counts, the difference in counts between two neighboring channels may be very large. Since 

the estimated errors are proportional to the square root of the number of counts, these 

errors do not reflect their statistical significance. Therefore, if the error drops more than 

a factor of two between two neighboring bins, the error in the higher-energy bin is set to 

50% of the error of the previous bin. This procedure affects only a small percentage of 

channels. 

The error propagation for the extraction method is also tedious. Therefore, a simu- 

lation technique is applied. First, a statistical fluctuation is added into the primary y-ray 

matrix: For every matrix element a random number between zero and one is chosen. Then 

a new number of counts for every matrix element is calculated as 

(3.26) 

where a is the number of counts and a is the error in the matrix element. Then a is replaced 

by the new number number of counts b that includes the statistical fluctuations. The 

functions p and T are extracted using the new matrix weighted by statistical fluctuations. 

These functions are calculated 100 times in order to obtain good statistics. The errors in 

the functions p and T are then calculated by 

I loo 

(3.27) 

(3.28) 

3.6 

The level density for each excitation energy obtained above is only one solution: there 

are infinitely many equally good solutions, which have the same x 2 .  The average slope 

Normalization of the Level Density to Experimental Data 
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and magnitude of the solution obtained from the x2 minimization depends on the initial 

choices of the functions p and 2'. One can find the most physical solution by comparing 

this solution to known data. For the normalization procedure we need two anchor points 

in order to fix both the slope and the magnitude of the solution. 

We compare the inferred level density to the known discrete levels per excitation- 

energy bin at low excitation energies and to the level density determined from the known 

neutron-resonance data at the neutron binding energy B,. For the level density at B, we 

use the Fermi-gas model [6] 

(3.29) 
f i e x p ( 2 m )  (2J + l)exp(-(J + 1/2)2/2u2) 

2 G a 3  dU7 J ,  = 12 .1/4u5/4 

for both parities and for a given spin J ,  and for all spins and parities 

(3.30) 

where u is the spin cut-off parameter and a is the level density parameter. The neutron- 

resonance spacing can be written as 

(3.31) 
1 1  
- = -(p(U,, J = I + 1/2) + p(Un, J = I - 1/2)) D 2  

where I is the spin of the target nucleus in a neutron resonance experiment, U, is defined 

as the binding energy B, minus the pairing energy, U, = B, - P,  with the assumption 

that both parities contribute equally to the level density at B,. Combining Eqs. 3.29 - 

3.31 yields the level density at B, 

(3.32) 
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where u2 is calculated using Ref. [6] 

c2 = 0.O888JaU,A2I3, (3.33) 

and A is the mass number of the nucleus. It is assumed that u2 has an error of about x 

10% due to shell effects [6]. 

Unfortunately, the level density cannot be compared directly to the level density at 

B,, since we extract the level density up to B, - 1.5 MeV due to the omission of the y 

rays below 1.5 MeV. Therefore the experimental level density is extrapolated to B, using 

the Fermi-gas level density, by combining Eqs. 3.30 and 3.33, 

(3.34) 

This is performed by adjusting the parameters A and cr of the transformation given by 

Eq. 3.8 such that the data fit the Fermi-gas level density in an excitation energy interval 

between 1.5 MeV and 2.5 MeV below the neutron binding energy. The level density is 

also adjusted to fit the known discrete levels at low excitation. More details will be given 

in Chapter 6. 

3.7 

The method has been tested on theoretically calculated primary y-ray matrices Pth(Ei, E?). 

The theoretical Pth(Ei, E-,) is constructed by multiplying a level density expression for p 

by a y-ray transmission coefficient expression for 7’. The back-shifted Fermi-gas formula 

is chosen for the level density 

Testing the Method on Theoretical Spectra 

(3.35) 
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Figure 3.5: Theoretical level density (top, left) and radiative strength 
function (top, right) used to calculate the primary yray spectra. The 
constant ratio of the extracted and theoretical values (lower panels) 
proves the reliability of the method. 

where U is the final excitation energy minus the pairing energy. Below the minimum 

at U = 9/4a, a constant level density was used. The 7-ray transmission coefficient was 

chosen as 

(3.36) 
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In addition, a fine structure was imposed on both functions p and T by scaling several 

- 1-MeV broad intervals with factors around 1.5 - 5. These functions are shown in the 

upper half in Fig. 3.5. By applying the x2 minimization, the functions p and T were 

extracted from the theoretical Pth(Ei, ET) matrix using the excitation energy interval of 

Ei = 4 - 8 MeV and excluding all y rays below E, = 1 MeV. Then the extracted p and 

T were adjusted using the transformation given in Eq. 3.8. The ratio of the extracted 

and theoretical functions is shown in the lower panels of Fig. 3.5. The deviation from 

the input functions was found to be smaller than one per thousand in the energy range of 

both functions (see Fig. 3.5), which indicates the reliability of the method. 

3.8 Application of the Method to 56Fe and 57Fe Spectra 

The primary y-ray spectra for 56Fe and 57Fe are obtained from the (3He,cr) and 

(3He,3He’) reactions, respectively. The details of the experiment are given in the next 

chapter. In Fig. 3.6 and 3.7, the normalized experimental primary y-ray spectra for 56Fe 

and 57Fe, respectively, are shown with data points at ten different excitation-energy bins. 

The lines are the calculated primary y-ray spectra, obtained by multiplying the extracted 

p’s and 2”s according to Eq. 3.4. The experimental and calculated spectra agree very 

well, which justifies the assumption that the primary 7-ray spectrum can be factorized 

according to the Axel-Brink hypothesis. 
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L 4 1  
Experimental Details 

4.1 Introduction 

The experiment was performed at the Oslo Cyclotron Laboratory at the University of 

Oslo in December of 2000. A 45-MeV 3He beam was delivered from a Scanditronix model 

MC35 cyclotron on a self-supporting 57Fe target with a thickness of 3.38 mg/cm2. The 

target was isotopically enriched to 94.7% with impurities as listed in Table 4.1. 

Table 4.1: Impurities in the 57Fe target. 

Isotope Abundance (%) 

58Fe 2.1 
5sFe 3.2 

In order to prevent pile up in the detectors, the beam current in the MC35 cyclotron was 

limited to a few nanoamperes. The MC35 cyclotron can accelerate protons, deuterons, 

3He, and a particles. The maximum energies of these ions are listed in Table 4.2. The 

experiment was performed for a week. The reaction y rays and particles were measured by 

the CACTUS multidetector array. The reactions 57Fe(3He,a)56Fe and 57Fe(3He, 3He’)57Fe 

are the focus for the present analysis. The experimental equipment is described in detail 

in the following sections. 

39 



40 

Table 4.2: Beam types and their  maximum energies produced at the Oslo 
Cyclotron Laboratory. 

Type of beam Max. energy (MeV) 

Protons lH+ 35 
Deuteron 2H+ 18 
Helium-3 3He++ 47 
Q: 4He++ 35 

4.2 CACTUS Multidetector Array 

The CACTUS detector array consists of 28 5" x 5" NaI(T1) and three HPGe detectors 

for measurements of the y rays, and eight silicon detectors for charged-particle detection. 

The NaI(T1) detectors in the array are mounted in a spherical frame with a radius of 250 

mm. The distance between the target position and the detectors is 220 mm. The detector 

configuration is illustrated schematically in Fig. 4.1. The position angles of the NaI(T1) 

detectors are listed in Table 4.3. 8 is defined as the angle for a detector with respect to 

the beam direction, and the angle 4 increases in the clockwise direction in the plane. Only 

one HPGe detector was used for the present experiment. The HPGe detector, which is 

not shown in Fig. 4.1, is also implemented in the detector frame in the position listed in 

Table 4.4. 

The total solid angle for the NaI(T1) detectors is calculated to be 17.7% of 47r from 

R = &, where N = 28 is the number of detectors, A = xu2 is the collimated front 

area of one detector with a radius of a = 35 mm, and R = 220 mm is the distance of the 

detectors from the target. 

At the end of the beam tube, a vacuum chamber is placed inside the detector frame. 

Eight Si particle telescopes are positioned in the vacuum chamber approximately 5 cm 

from the target on a plastic ring with an angle of 45' in the forward direction with respect 

to the beam axis. The Faraday cup is located at a distance of 1.5 m outside the detector 

frame to stop the incident beam. 

Particles and y rays produced in the reactions are measured in both p a r t i c l v  



41 

Si particle 
telescope 

I :chamber \ 4 

Nal(TI) detector 
CACTUS frame 

Figure 4.1: Schematic drawing of the CACTUS multidetector array ( [56] .  

Table 4.3: Position of the NaI(T1) detectors. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

37 
37 
63 
37 
63 
63 
79 
63 
79 
63 
79 
79 
79 
101 

36 
324 
216 
180 
144 
72 
36 
0 

324 
288 
252 
180 
108 
72 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

101 
101 
101 
101 
117 
117 
117 
117 
143 
117 
143 
143 
143 
143 

0 
288 
216 
144 
108 
36 
324 
252 
216 
180 
144 
72 
0 

288 
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Table 4.4: Position of the 60% HPGe detector. 

6 ( d 4  4 (d%) 

37 108 

coincidence and particle singles mode by the CACTUS multi-detector array. 

4.2.1 Silicon Particle Detectors 

Semiconductor detectors, such as silicon and germanium, are essentially solid-state ver- 

sions of gas-filled ionization chambers. The incident radiation loses energy by an ionization 

process in which electron-hole pairs are produced, as opposed to electron-ion pairs in the 

gas-filled chamber. This process occurs in the following way: An electron is raised from 

the valence band, across the band gap, to the conduction band. If an electric field is 

present from an external bias, the electron is pulled to the cathode, thus producing a 

negative chirge pulse. The electron that is in the conduction band leaves a hole in the 

valence band. When the hole is filled by another electron, a new hole is created, which 

then is filled by another electron, and this process creates a positive charge pulse in the 

opposite direction of the moving electron. The ideal resolution (FWHM) of a detector is 

expressed by the formula [57] 

FWHM = 2.355- 

where E is the energy deposited in the detector, F is the so-called Fano factor, which 

implies deviation from Poisson statistics, and E is the energy to create a pulse carrier. The 

average energy to create an electron-hole pair in silicon is 3.81 eV, which is 10 times smaller 

than that required for gas ionization. Furthermore, the Fano factor for semiconductor 

detectors is less than that for gas or scintillator detectors. Correspondingly the energy 

resolution is excellent. 

As shown in Fig. 4.2, each particle telescope consists of one Si front and one Si(Li) 
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Figure 4.2: Schematic drawing of a Si particle detector. 

end detector, respectively called AE and E. The thicknesses of the AE and E detectors 

are chosen such that particles of interest with maximum energy will be stopped in the end 

detector. An cr particle with 15-MeV energy or more can pass through an OE detector 

with a thickness of 150 pm. The E detectors can stop a particles up to 80 MeV. The end 

detectors have a thickness of 3000 pm. The thickness of the front detectors is about 145 

pm, and varies from one detector to another, as listed in Table 4.5. The leakage current 

Ileakage for each detector is also given in Table 4.5. The leakage current in semiconductor 

detectors is the current that is created by any source other than ionizing radiation and 

appears as noise in the detector output pulse. Due to a very high leakage current level, 

the detector # 1 was not used for data analysis. 

Table 4.5: The thicknesses and leakage currents for the end detectors. 

Det. # AE thickness (pm) Ileakage(pA) 

1 144 
2 150 
3 142 
4 140 
5 137 
6 143 
7 143 
8 140 

> 10 
10 
3 
3 
8 
3 
7 
2 



44 

, As shown in Fig. 4.2, the reaction particles are collimated by a 3-mm thick aluminum 

collimator with a 3.5-mm radius. When the beam passes through the target a large number 

of low-energy electrons (so-called 6 electrons) are freed. Because these electrons produce 

unwanted signals, the front detectors have a 19-pm thick A1 foil to stop the 6 electrons. 

The energy resolution of the silicon detectors is about 400 keV at 40 MeV. 

In order to distinguish between different types of outgoing particles measured by 

the silicon detectors, particularly between 3He and (Y particles, the AE - E particle- 

detector technique is employed. This technique uses the fact -that the energy loss of a 

charged particle per unit length in a medium is a function of the charge and the mass 

of the penetrating particle. The Bethe-Bloch formula is a commonly-used expression for 

quantum-mechanical calculations of the energy loss 

where 
N, : 

re : 

me : 

P :  

z :  

A :  

_- dE - - 2nNarem,c 2 2 Z Z 2  p-- 
dx A P2 

Avogadro’s number = 

6.022 x mole-’ 

classical electron 

radius = 2.817 x cm 

electron mass 

z : atomic number of incident 

particle 

P : v/c of the incident particle 

Y : 1/J1-i7’i 
I : mean excitation potential 

density of absorbing material W,, : maximum energy transfer 

atomic number of absorbing 

material 

atomic weight of absorbing 

material 

in a single collision 

According to Eq. 4.2 the rate of energy loss increases as the charged particle slows 

down. The penetration depth or range as a function of particle kinetic energy differs for 

each charged particle due to their different charge and mass numbers. A given particle 
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loses a different fraction of its energy in the front and end detectors depending on its 

energy. Therefore the AE vs. E plot shows different patterns for each type of charged 

particle. Additional discussion on the AE - E technique is given in connection with the 

particle-detector analysis in Chapter 5.  

4.2.2 Gamma-ray Detectors 

In nuclear physics experiments, several types of y-ray detectors are used, including high- 

purity germanium detectors (HPGe), and thallium-activated sodium iodide detectors 

(NaI(T1)). The HPGe detectors are semiconductor detectors, briefly described in the 

previous section, and have excellent energy resolution. The average energy required to 

create an electron-hole pair in germanium detectors is only 2.96 eV. Thus the amount 

of ionization produced by incident radiation in the Ge detectors is very large compared 

to other “/-ray detectors. Furthermore, the small Fano factor results in increased energy 

resolution. However, Ge detectors cost much more than do NaI(T1) detectors. In addi- 

tion, all semiconductor detectors, except silicon, require cooling at low temperatures to be 

operated. As shown in Fig. 4.3, a cryogenic system is attached to a germanium detector. 

Therefore, the CACTUS multi-detector array is dominated by NaI(T1) detectors. Only 

one HPGe detector (60% efficient relative to a 3” x 3” NaI(T1) detector) was used in the 

present experiment in order to identify the reaction 7 rays, and therefore the reaction 

channel. 

I preympiifier 

liquid 
nitrogen 

- copper absorb& 

Figure 4.3: Schematic drawing of a Ge detector. 
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The NaI(T1) detectors are scintillation devices, and are used with photomultiplier 

(PM) tubes, as shown in Fig. 4.4. When the incident radiation enters the detector, 

electrons are raised to the conduction band. Eventually the excited electron loses its 

energy by emitting visible or near-visible light when it recombines with the hole left 

in the valence band. To increase the probability of the light emission and to reduce self 

absorption of the light, small amounts of thallium impurities are introduced to the crystal. 

The impurities provide states in the energy gap, and light emission takes place between 

these states. When the light emitted by the crystal strikes the photosensitive surface of 

the PM tube, it releases one or more photoelectrons. These electrons are then multiplied, 

accelerated, and formed into an output pulse in the PM tube. The shape of the pulse 

carries time information about the collection of the incident 7 ray, while the magnitude of 

the pulse is proportional to the energy of the radiation deposited in the NaI(T1) crystal. 

Large volume NaI(T1) detectors provide a very high detection efficiency. However, several 

factors in the process of formation of the electronic pulse in the PM tube, such as non- 

radiative recombination and fluctuations in the amplification of the photoelectrons, result 

in poor energy resolution in the NaI(T1) detectors. 

la tera I lead 
shielding collimator 

I copper 
plastic absorber ring 

Figure 4.4: Schematic drawing of a NaI(T1) detector. 

The y rays produced during the reaction processes are collimated with lead collima- 

tors. In order to absorb the X rays produced by the interaction of the y rays with lead, a 

2-mm thick copper absorber is placed in front of the collimator. The NaI(T1) detectors are 
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surrounded by a plastic ring for neutron shielding. One disadvantage of a multidetector 

array is the crosstalk between the detectors. This occurs when a y ray interacts with one 

of the detectors and then scatters into another detector. In this case, a y ray is measured 

by at least two detectors within the detector response time. A 3-mm thick lateral shielding 

is used to reduce the crosstalk between the detectors. 

4.3 Electronics 

The electronics at the Oslo Cyclotron Laboratory are located in two places, one in the 

experimental room and the other in the control room. Figure 4.5 shows the electronics di- 

agram in the experimental room where the time signals from the particle and Ge detectors 

are obtained and transfered to the setup in the control room. 

The pulses from the particle and Ge detectors are first preamplified and then sent 

to timing filter amplifiers (TFA) to produce time signals. In the case of the end detectors, 

the detector output signals are first summed by a linear fan (Lin OR) in a group of four, 

designated by EA and EB in Fig. 4.5, and then sent to the TFAs since there are not 

enough modules to process each end detector signal separately. The TFA outputs are 

processed by constant fraction discriminators (CFD) to generate timing logic signals. The 

CFD signals of the front detectors are connected to a multiplicity logic unit (N = 1). 

This unit gives a signal only if one front detector is hit. The output signal is then tested 

with a pileup rejection module (PUR) in order to detect the pileup events, i.e., the PUR 

module simply takes the logic signal from the multiplicity unit, and stretches it for M 1 

ps; if another pulse arrives within the time interval, it gives an inverted logic signal as an 

indication of a pileup event. Then the pileup signal is sent to a VME trigger pattern 

unit (TPU) where the event is cancelled to prevent further processing. The number of 

pileup events was also monitored with a scaler during the experiment. 

A summed attenuated analog output of the particle front detector CFD is amplified 

by a TFA for a threshold setting (Z > 1). Because fast electrons and H isotopes deposit 

only small amounts of energy in the front detector, they are ruled out with this threshold 

setting at an early stage of the data acquisition. A delayed output from the N = 1 unit is 
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Figure 4.5: Diagram of electronics in the experimental room. The figure 
is taken from Ref. [58]. 

sent to a coincidence unit (AND) in order to produce the coincidence between the front 

and end detectors. 

The end detector CFD logic signal, a delayed front-detector (N = 1) unit signal, and 

the Z > 1 CFD signal are connected to a coincidence unit (AND) to test whether all three 

signals are in coincidence. In other words, the coincidence unit requires three conditions: 

i) only one front detector is hit (N = l), ii) the particle front detector CFD signal is higher 

than a threshold setting (Z > l), iii) at least one particle end detector is hit. If all three 

conditions are satisfied then the coincidence unit gives a signal. Unfortunately, there is no 

requirement that the particle front and end detectors of the same telescope are hit, and 

that only one particle end detector is hit. Because the particle multiplicity and the beam 

current are relatively low, this is not considered a serious problem. A scaler serves as a 

counter for several unit signals, such as the coincidence rate of the particle detectors and 

the summed rate of the Ge detectors. Since the elastically-scattered 3He particles have a 
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high rate, every other event is rejected with a (1/N with N = 2) module unless a y-ray 

detector is hit (shown as P div. output in Fig. 4.5). 

The electronics setup in the control room is shown in Fig. 4.6. Pulses from the 

NaI(T1) detectors are processed by CFDs. One branch from the CFD is first sent to a 

veto discriminator, where particle-y coincidences are tested. If there is a coincidence, a 

logic signal is used to start a time-to-digital converter (TDC). Another delayed branch 

from the Nal(T1) CFD is used to stop the TDC. The time interval between start and stop 

signals in the TDC is then digitized to obtain the time information about the event. The 

gate generators (GG) connected to the discriminator create a gate for the ADC where 

the energy of the radiation is recorded from the amplifier output pulses that arrive for an 

analog-to-digital conversion. The other logic units connected to the discriminator are used 

i) to find which particle-detector group is in coincidence with the y ray, and subsequently 

gate on the particle detector ADC, ii) to start the Ge detector TAC (the ADC connected 

to the TAC together works as a TDC unit), iii) to set flags in the VME trigger pattern 

units. The control of the NIM-ADCs by VME-ADC controllers, and the control of the 

CAMAC crate by a CAMAC-branch driver are not shown in Fig. 4.6. The W E  crate 

accommodates connections to the SUN-Sparc station via a BIT3 computer, where tape 

storage on EXABYTE tapes can be performed. 

The flag or the hit pattern at each TPU is displayed in Table 4.6. Each flag simply 

tells if the corresponding detector has the data information. Having the flags in hand, 

an event matrix is generated by an offline program, as shown in Table 4.7. The particle 

energy and y-ray energy deposited in the germanium detector, and its time information 

are registered in the TPU block 1. The y-ray energy deposited in the NaI(T1) detectors 

and corresponding time information are recorded in TPU block 2 and TPU block 3. The 

virtual TPU 4 is not a real module, but is created by the offline program in order to show 

in which detectors the pileup events occurred. The event matrix generated by the offline 

program is used during the data sorting. First the bit test of the trigger pattern unit is 

checked, and if it is TRUE then the available data information is extracted from the event 

matrix in Table 4.7. 



50 

.- E 

.- E 

t- 
0 z 
- 

I- 
0 z 
- 

L 

L 

1 1  I d  

ADCADCADCADC 

Gel Ge2 Ge3 GeT 

Y 

Group 8 

Group A 

Figure 4.6: 
taken from Ref. [58]. 

Diagram of electronics in the control room. The figure is 



Table 4.6: Flags or hit patterns for the TPUs. 

time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 

Bit 
number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
1 5  

0/1 
flags 

T P U  1 

group A 
singles 
group B 
coincidence 
Ge 1 

Ge 2 

Ge 3 

Ge time 

T P U  2 

NaI 1 
NaI 2 
NaI 3 
NaI 4 
NaI 5 
NaI 6 
NaI 7 
NaI 8 
NaI 9 
NaI 10 
NaI 11 
NaI 12 
NaI 13 
NaI 14 
NaI 15 
NaI 16 

T P U  3 

NaI 17 
NaI 18 
NaI 19 
NaI 20 
NaI 21 
NaI 22 
NaI 23 
NaI 24 
NaI 25 
NaI 26 
NaI 27 
NaI 28 
NaI 29 
NaI 30 
NaI 31 
NaI 32 

virtual T P U  4 

(pile UP) 

Table 4.7: Event matrix generated by an offline program. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

AE 1 
AE 2 
AE 3 
AE 4 
AE 5 
AE 6 
AE 7 
AE 8 
Ge 1 
Ge 2 
Ge 3 

W )  
E(B) 

T P U  block 1 

word # 

0/1 AE(A) E(A) 
flags 

E(B) 

G e l  

Ge 2 

Ge 3 

Ge time 

T P U  block 2 I T P U  block 3 I T P U 4  

3 4 1 6  7 8 1 9  10 

0/1 NaIl  
flags Na12 

Na13 
Na14 
Na15 
NaI6 
Na17 
Na18 
NaI9 
NaIlO 
N a I l l  
NaI12 
NaI 13 
NaI14 
NaI15 
NaI16 

time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 
time 

0/1 NaI17 
flags NaI18 

NaI19 
NaI20 
NaI21 
NaI22 
NaI23 
NaI24 
NaI25 
NaI26 
N d 2 7  
NaI28 
NaI29 
NaI30 
Na13 1 
NaI32 
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Data Analysis 

The data analysis involves several steps, and each step requires different information ex- 

tracted from the raw data, such as the particle energy, y-ray energy, particley ray co- 

incidence matrix, etc. The recorded data have a specific pattern. Several sorting codes 

written in FORTRAN and C programming languages are used to translate the format of 

the data written on the tape into a format that the MAMA matrix manipulation program 

[59], which will be used throughout the analysis, can read. The ultimate goal of the anal- 

ysis procedure is to obtain a primary y-ray spectrum for each excitation energy window 

in the residual nucleus which is populated in the reaction processes, i.e., an E, vs. E, 

matrix. This matrix will then be used to extract the level densities and 7-ray strength 

functions in “Fe and 57Fe. The details of the analysis, including the procedure for un- 

folding the continuum y-ray spectrum and for extracting the primary y-ray spectrum, are 

given in the following sections in this chapter. Some details relating to the mechanism of 

the 57Fe(3He,a)56Fe reaction will be useful in the discussion of the analysis. 

5.1 The 57Fe(3He,ay)56Fe Reaction Mechanism 

Bombardment of the 57Fe target with a 45-MeV 3He beam opens a number of reaction 

channels, such as 57Fe(3He,3He’y), 57Fe(3He,ay), and 57Fe(3He,znay), where z is the 

multiplicity of the neutron emission. Of all of the a-out channels the (3He,ay) reaction is 

of interest for this discussion. The (3He,ay) reaction is a direct neutron transfer reaction 

52 
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which transforms the target nucleus to the isotope with one less neutron in its ground or 

an excited state. Once the outgoing a-particle energy is measured, one can determine the 

excitation energy of the residual nucleus 56Fe from the reaction kinematics. 

The reaction Q value is defined as the initial mass energy minus final mass energy; 

thus for the 57Fe(3He,(r)56Fe reaction 

2 Q = (mZHe + mwFe - m, - 

= 

= 0 . 0 1 3 8 8 3 ~ ~ ~  

(3.016029 + 56.935399 - 4.002603 - 5 5 . 9 3 4 9 4 2 ) ~ ~ ~  

= 12.931931 MeV (5.1) 

where 1212 = 931.494013 MeV. The positive Q value indicates that energy is released as 

kinetic energy or as excitation energy of the final products. 

The spin and parity of the incident particle and the target nucleus are s = 1/2+ and 

I = 1/2-, respectively. The total angular momentum J is a combination of three angular 

momenta: the orbital angular momentum 1 ,  the spin s of the incident particle, and the 

spin I of the target (all in units of r i ) .  The channel spin is defined as S = s + I. In this 

case, S can be 0 or 1. If the incident particle is in its Ith partial wave, the total angular 

momentum J assumes the values I Z  - SI, ..., [I + SI. Given that the kinetic energy of the 

incident particle is 45 MeV, the orbital angular momentum can be found approximately 

from the classical relation of kinetic energy to angular momentum 

Z(Z+ l )h2 E =  
2ma2 

where a is the impact parameter, taken as a = l.2A1i3 fm with A = 3, and m is the mass 

of the incident particle. One finds 
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1 ( 1 +  1) M 13, (5.3) 

which implies I to be 3 or 4. If S = 0, then J = 3 for 1 = 3, and J = 4 for 1 = 4. If S = 1, 

we find J = 2, 3, 4 for 1 = 3, while J = 3, 4, 5 for 1 = 4. If the outgoing a particle does not 

carry away much of the angular momentum, the residual nucleus is left with most of the 

angular momentum. The current configuration of the particle telescopes does not allow 

angular distribution measurements of the a particles since the telescopes are fixed at 45" 

forward angle with respect to the beam direction. From the above considerations we can 

estimate that the (3He,ay) reaction populates low-spin states with about 2 - 8li in 56Fe. 

5.2 Particle-Spectra Analysis 

As explained in Chapter 4, each silicon particle telescope consists of one front (AE) and 

one end (E) detector. The raw data are sorted to obtain the spectra of the front and end 

particle detectors, as shown in Fig. 5.1. 

According to the Bethe-Bloch formula (see Eq. 4.2) slow particles deposit a large 

amount of their energies in the front telescope, while high-energy particles pass through 

the front telescope with little energy loss, and then deposit the rest of their energy in the 

end detector. Therefore, the lower channels in the AE spectrum and the higher channels 

in the E spectrum correspond to particles with high energy. 

The prominent peak in both the AE and E spectra in Fig. 5.1 corresponds to 

elastically-scattered 3He particles. The counts below the elastic peak in the AE spectrum 

are due to the H isotopes, i.e., p, 2H, and 3H. The counts above the elastic peak are due 

to a particles from the (3He,zna) reaction channels, and 3He particles from the inelastic 

scattering channel. Similarly, lower channels below the elastic peak in the E spectrum are 

due to the inelastically scattered 3He particles, the H isotopes, and slow a particles from 

the (3He,zncu) reactions. Because the 57Fe(3He,a) reaction has a positive Q value, the a 

particles from this reaction appear above the elastic peak. The peak structures in this 
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Figure 5.1: 
detector 3. 

Particle spectra obtained from the front and end particle 

region are the discrete levels in 5sFe. The counts above the channel of the ground state 

are due to detector pileup events. These events occur when two particles are detected in 

the same detector; then the energy is the sum of the two energies, resulting in a higher 

channel. 

In order to identify the 5sFe discrete levels in the E spectrum, this spectrum is 

compared with the particle spectrum from Ref. [60], which was obtained from a similar 

57Fe(3He,a) experiment with a 14.3-MeV incident beam and 33" scattering angle. The 2f 

state in 5sFe is identified by this comparison and is shown in Fig. 5.1. With two peaks 
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identified, the elastic and the 2;-state peak, one can easily determine the gain and shift 

for the end detectors and calibrate the E spectrum. 

First one needs to determine the energy deposited in the E detector for these peaks. 

Particles lose energy due to straggling in the target. This energy is calculated for the 

3He and a particles. Then the energy loss in the A1 foil is determined from the Bethe- 

Bloch formula (see Eq. 4.2). Next, the energy loss in the front detectors for the elastic 

3He particles and for the a particles, which leave the residual 56Fe in the first-excited 

state, were determined using the Bethe-Bloch formula. This calculation gives the energies 

of these ejectiles that were deposited in the end detectors. The end-detector spectrum 

is calibrated using these energies and the centroid channels for the 3He and a particles. 

Similarly, we need at least two calibration points to calibrate the front detectors. Since 

the events in the upper end of the AE spectrum are essentially the same events as those 

in the lower threshold of the E spectrum, one can use the upper threshold of the AE 

spectrum as a calibration point. Its energy is determined by applying the Espectrum 

calibration to the energy of the lower threshold. Then the energy loss for a particles in 

the front telescope is calculated from the Bethe-Bloch formula. Finally, the gain and shift 

for the AE detector are found using the energy loss for elastically-scattered 3He particles 

and the threshold events. 

5.3 Data Reduction 

Using the gain and shift obtained for the particle detectors as an input, the small drifts in 

the calibration of the end detectors are calculated with a program called REDUC [61]. The 

REDUC code accumulates data of 20 records, determines the position of the elastically- 

scattered 3He peak in the end detector spectrum, calculates a correction factor for the 

calibration of the end-detector spectra (assuming that the ADC shifts of these spectra 

are constant), and writes it onto a new tape. Furthermore, the code REDUC rejects the 

events that are associated with proton- or deuteron-out channels by setting a broad gate 

in their thickness spectra, which will be described in the next section. Therefore, the 

particle spectra are aligned and are mostly free of protons and deuterons on the new tape. 
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1 

1 

Figure 5.2: Total particle energy spectrum. 

The particle spectrum on the new tape has a resolution of 40 keV per channel. 

Once the particle front and end spectra are all aligned, one obtains the total energy 

of a measured particle by adding the energy deposited in the front and end detectors. 

Figure 5.2 is obtained by summing the front and end energies from all of the telescopes. 

5.4 Gating on a. Particles 

The reduced data are sorted into a two-dimensional matrix with the AE energy along one 

axis and the E energy along the other axis. The characteristics of a AE vs. E spectrum 

is that for each type of particle there is a unique banana-shaped curve. In Fig. 5.3, an 

example of a AE - E spectrum is shown; one can readily distinguish between the 3He 

and a particles. The a banana includes a particles from reaction channels that eject an a 

particle, i.e., (3He,a) and (3He,2na), where 5 is the multiplicity of the emitted neutrons. 

By projecting the matrix onto the AE (E) axis, one obtains a front-detector (end-detector) 

spectrum. By projecting the matrix along the opposite diagonal with E + AE = Etot, one 
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obtains the total energy spectrum. The 2;-state peak from the single a-out channel and 

the elastic 3He peak can be found at the right end of the respective banana curves. The 

tail leading away from the elastic peak is too asymmetric to be explained by straggling in 

the front detector. A more likely explanation is that a small amount of the ejectiles are 

channeling through the front detector due to its polycrystalline structure. The H isotopes 

are not completely eliminated from the spectrum in the process of reducing the data, as 

seen below the 3He banana in Fig. 5.3. 

In order to gate on a specific particle the AE - E technique introduced in Chapter 

4 will be used. First we need to construct a range curve. A range curve simply describes 

how deep a certain particle with a given kinetic energy can penetrate a certain material. In 

general, for a charged particle this is dominated by energy loss due to ionization. Earlier 

experiments with the CACTUS multidetector array showed that the range curve can be 

described accurately with the following parameterization [58] : 

where a, b, and c are free parameters, and E is the kinetic energy of the charged particle. 

From the definition of the range curve, it follows that the total range for a given particle 

minus the range for that particle in the end detector equals the thickness of the front 

detector: 

where AE and E are the energies deposited in the front and end detector, respectively. 

We would like to obtain the parameters a, b, and c. First, the energies deposited in the E 

and A E  detectors for several events are obtained from the AE-E matrix (Fig. 5.3). The 

points marked along the cr-banana curve are selected for this purpose. Then Eq. 5.5 is 

solved for the marked A E  and E energies by fitting the parameters of Eq. 5.4. The fit 
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Figure 5.3: AE vs. E spectrum obtained from telescope 7. 
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displayed in Fig. 5.3 as a solid line describes the Q banana very well. The other parallel 

lines correspond to the fits for different thicknesses of the front detector. The resulting 

range curve for a particles in silicon is plotted in Fig. 5.4. 

Once the parameters a, b, and c are determined, the range curve is employed in the 

next data sorting, and by inserting the particle energies into Eq. 5.5, dfront is found for 

every particle event. The new spectrum obtained this way is referred to as the thickness 

spectrum. The thickness spectrum is essentially the projection of the data in the AE-E 

matrix along the solid lines. 

Figure 5.5 shows the thickness spectrum obtained for telescope 7. A thickness 

spectrum is obtained for each particle telescope. The peaks for the 3He and Q particles 

are well separated. The peak centroid for the Q particles agrees with the thickness of 
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Figure 5.5: Thickness spectrum of particle telescope 7. 

the AE detectors from the specification sheets delivered by the manufacturers. Finally, 

one can set a gate for the 3He and a particles in the thickness spectrum, as shown by 

the dashed lines in Fig. 5.5. These gates will be used in subsequent data sort routines to 

extract the a - y and 3He - y coincidences. 

5.5 

In the present experiment timing information is needed to determine the particle-y co- 

incidences, i.e., zero timing interval. The best timing information is obtained when the 

charge signal is collected very rapidly in the detector, and a large number of carriers (ion 

pairs, electron-hole pairs) are generated by the incident radiation. The time information 

is registered by a time-tedigital converter (a TAC and an ADC connected together) that 

Particle - y-ray Coincidence Timing 
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records the time interval between the input start and stop pulses arriving at the TDC. 

The distribution of the digitized time intervals between the start and stop pulses is called 

a tame spectrum. 

The data are sorted to obtain the timing of the particle-detector signals with respect 

to the y-ray detector signals by gating on the a particles. Given that there are seven 

particle detectors and 28 NaI(T1) detectors, one obtains 196 Si - NaI(T1) time spectra. 

The time spectra must be aligned and summed together in order to set a gate in the 

time spectrum for the particle - y-ray coincidences. The time spectra are aligned using a 

PAW macro [62], assuming two different offsets in the time spectra, one from the particle 

telescopes, and the other from the Nd(T1) detectors. First we determine the centroid 

positions of the time spectra. These centroids includes the contributions mentioned above, 

and can be written explicitly in a matrix form 

T =  

s 7  + n1+ A71 s 7  + n2 + A72 s7 + 723 + A73 . . . s7 + 7228 + A728 

where s and n are the contributions from the Si(Li) and NaI(T1) detectors, respectively, 

and Aij are the fluctuations from these components. Alternatively, one could write 

The total sum in each matrix element is already known. 

individual components si and nj. This can be done in the following steps: 

We would like to find the 
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1. sa = sa + n + Ai each row is added, and divided by the number of 

NaI(T1) detectors 

each column is added, and divided by the number 2. N j  = s + nj + 6j 

of particle detectors 

& and & j  are assumed to be zero due to averaging C ; = ~ S ,  - EEiNj  - - - s + f i  7 -  28 3. 

4. S + n + x = 3 0 0  the centroid channel for the aligned spectrum will 

be at channel 300 

3 is set to zero, x is the shift due to drift in the time 5. x = 300 - f i  

spectrum 

In the above procedure, the fluctuations in the sa and nj components are averaged. 

Therefore, it is safe to assume that they are zero. We cannot find the S and f i  separately. 

Therefore, we set S to zero, and calculate the individual si and nj from the first and second 

steps. The new aligned time spectrum is displayed in Fig. 5.6. The time spectrum is fitted 

by the function [58] 

+ if ZO 2 z 

- if zo < x 
a 

where 
b + 1.0 - Zpfp  

Y =  

where 50 is the channel of the centroid, and a,  b, v, and p are parameters to be determined. 

The maximum of the function is ymaz = a /b  at xo = 2. If the channels on two sides of 

the centroid at the half maximum are q and 22, one can find the FWHM by calculating 

(20 - XI) + (22 - ZO), i.e., 
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by using ymaz = a / b  in Eq 5.7 one obtains 

Then the FWHM is 

The fit is performed between channels 200 and 440 assuming a linear background. The 

FWHM is found to be M 40 channels. The gain of the time spectrum is 0.5 ns/channel. 

The background subtracted area of the prominent peak in Fig. 5.6 gives the true 

+ chance coincidences. The area of the peak to the left of the prominent peak gives the 

chance coincidences with a previous beam pulse. The gates 1 and 2 shown with dashed 

lines in Fig. 5.6 will be used to obtain the particley coincidences. For example, if an 

event falls into the gate 2, it will be added; if it falls into the gate 1, the event will be 

subtracted, and everything else is rejected. 

5.6 NaI( T1)-spectra Analysis 

The NaI(T1) detectors are calibrated using one in-beam and two background y rays. Un- 

fortunately, these y rays cover a small energy range up to 2614 keV in the E, spectrum, 

while the maximum energy is around 10 MeV. The lowest y-ray energy is 847 keV, which 

is the in-beam 2+ + O+ transition in 56Fe. A background run performed before the ex- 

periment provides two calibration energies, one at 1461 keV (in the 40Ar nucleus), and 

the other at 2614 keV (in the 208Pb nucleus). The former results from naturally-occurring 

40K decaying into the first excited state in 40Ar after capturing an electron. The latter is 

a result of the radioactive thorium-232 series reaching the stable 208Pb nucleus. 

The centroid channels corresponding to the three y-ray energies are fitted linearly 
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Figure 5.6: Time spectrum of the particle detectors with respect to the 
NaI(T1) detectors. 

for each NaI(T1) detector. Figure 5.7 shows the residuals of the linear fit, obtained by 

subtracting the experimental channels from the channels calculated from the linear fit. 

The parameters of the linear fit are also displayed in Fig. 5.7. For a good calibration 

all of the residual data points should be close to zero. For the majority of the detectors 

the residual data points lie between zero and four channels in Fig. 5.7. The difference 

between the experimental and the calculated channels reaches about ten channels for a 

few detectors. Since the detector gain is 10 keV per channel, ten channels correspond 

to a 100 keV difference. A further approach to refine this calibration would be fitting 

the residuals by a nonlinear function. In our case, however, this procedure is dangerous 

because we do not have calibration points to define the behavior of the nonlinear function 
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at high 7-ray energies. Therefore, a nonlinear fit was not performed. 

5.7 Particle - y-ray Matrix 

Thus far the data from the particle detectors and the 7 -ray detectors have been analyzed. 

The appropriate gates, one on the thickness spectra to gate on a specific particle (a or 

3He) and the other on the time spectra to gate on the particle - 7-ray coincidences, are 

constructed. These gates are used to sort the data into a two-dimensional particle energy 
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Figure 5.8: a-y coincidence matrix. 

vs. y-ray energy matrix. The 3Hey and a-y matrices are displayed in Fig. 5.8 and Fig. 5.9, 

respectively. The particle spectra in Fig. 5.10 are obtained by projecting the T-ray energy 

axis onto the particleenergy axis in the respective particley matrix. In the top panel, 

the energies where the 57Fe(3He,3Hezn) reactions start are labeled with the multiplicity 

of the neutron emission: e.g., Ban corresponds to the 57Fe(3He,a2n)54Fe channel. The 

most energetic a particles are those from the (3He,a) reaction channel. When neutrons 

are emitted from the compound nucleus along with the a particles, the energy is shared 

between the neutrons and the Q particles; therefore, those a particles appear in the low- 

energy region in Fig. 5.10. Similarly, the energies where the 57Fe(3He,3Hezn) reactions 

start to dominate are labeled in the lower panel in Fig. 5.10. The maximum 3He-particle 

energy is around 43 MeV, a few MeV less than the initial 45 MeV energy, due to the 

energy loss in the target and the A1 foil in front of the detectors. The difference in the 

maximum energies for the 3He and a particles in the two spectra results from the positive 

Q value of the (3He,a) reaction. 
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For the following analysis procedure, the particle energy is transformed into the 

excitation energy of the product nucleus. Note that the particle detectors were already 

calibrated using the reaction kinematics; thus that calibration is employed for the energy 

transformation. Since we are interested in the (3He,a) and (3He,3He’) reaction channels, 

we take a partition in the corresponding particle vs. y-ray energy matrix only for those 

reaction channels. 

5.8 

When an incident y ray hits a detector, it interacts with the detector material in three 

ways: Compton scattering, photoelectric absorption, and pair production. The y ray can 

Compton scatter several times; and after each scattering, it loses some energy and a free 

electron is produced. At low y-ray energies photoelectric absorption becomes dominant 

and the photon vanishes. If the original y ray loses all of its energy in the detector, the de- 

posited energy is equal to the original y-ray energy, and the respective peak in the energy 

Unfolding the Total y-ray Spectra 
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Figure 5.10: Particle spectra gated on -y rays. 

spectrum is called the full-energy peak or photopeak. Unfortunately, Compton scattered 

photons may escape from the detector due to finite-detector size. These events appear 

in the lower energy side of the full-energy peak as a continuum called the Compton con- 

tinuum. The incident radiation might also lose energy by producing an electron-positron 

pair. Then the pair production is followed by positron annihilation, Compton scattering, 

and photoelectric absorption; again complete energy loss occurs. If one of the annihilation 

photons leaves the detector, the y ray deposits its full energy minus 511 keV. If both 

annihilation photons leave the detector, it results in energy deposition of the full energy 

minus 1022 keV. The corresponding peaks in the energy spectrum are called single-escape 
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and doubleescape peaks, respectively. The detector response function has contributions 

from all of these processes. In addition, the x 200-keV backscattering and 511-keV an- 

nihilation peaks, which originate in the material surrounding the detector, appear in the 

detector response function. The response function may depend on several variables, such 

as operating conditions of the detector and detector geometry, and it is very important 

to subtract the incomplete-energy contributions from the total y-ray spectrum in order to 

obtain the full-energy events. 

Thus it is necessary to know the detector response function for each y-ray energy. 

For y rays with no response function, one needs an appropriate interpolation procedure 

to find response functions for a large range of y-ray energies. In the next section we give 

details of interpolating the response matrix for the CACTUS multidetector array [63]. 

Then the y-ray spectra will be unfolded using the response matrix [63]. 

5.8.1 Response Function 

The response functions are obtained for the 28 collimated and shielded 5” x 5” NaI(T1) 

detectors in khe CACTUS multidetector array. The measurements are performed with 

ten monoenergetic 7 rays: 122, 245, 344, 662, 1173, 1333, 1836, 4439, 6130, 15110 keV. 

The response functions for other y-ray energies are obtained by an interpolation between 

the known response functions. The interpolation of the Compton background and the 

prominent peaks (single escape, double escape, annihilation, and back scattering peaks) 

are performed separately. This separation both simplifies the interpolation procedure, and 

allows one to construct a new response matrix when the experimental energy resolution 

is different from the resolution of the observed response matrix. Thus the Compton 

background (c) is obtained by subtracting the full-energy (f) ,  singleescape (s), double- 

escape (d), and annihilation (a) peaks from the observed spectra. Then the probabilities 

that an event belongs to one of the five components is normalized to one, i.e., 

(5.10) 
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These probabilities, the full-width at half maximum (FWHM), and the total y-ray effi- 

ciencies are listed in Table 5.1. 

The interpolation between the peak structures (f, s, d, a) is performed simply by 

placing a Gaussian distribution at the interpolated peak position with the proper intensity 

and energy resolution. The interpolation of the Compton background is more complicated, 

and relies on the fact that Compton scattering is a slowly-varying function of the incident 

y-ray energy. The energy transferred to an electron or the energy deposited in the detector, 

in a Compton scattering event is given by 

(5.11) 

where moc2 is the rest mass energy of the electron and 8 is the angle of the scattered y 

ray from the original direction. The Compton backgrounds for different incident y-ray 

energies are shown in Fig. 5.11. The spectra C1 and C2 in Fig. 5.11 are the measured and 

normalized Compton spectra, and the spectrum C is to be obtained by interpolation. The 

Compton background becomes more compressed with decreasing 7-ray energy, thus, A8 

decreases. The interpolation is performed between channels that correspond to the same 

scattering angle 8, with the assumption that only one Compton scattering occurs and that 

the scattered y ray escapes from the detector. This assumption is reasonable because a y 

ray scattered more than once is more likely to deposit its complete energy in the detector. 

The area covered by A8 in the Compton spectra can be written 

(5.12) 

E,, Erl, and E,, are the full energies for the spectra C, C1, and C2, respectively; E ,  
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Table 5.1: The FWHMs, y-ray efficiencies, and intensities deduced for a num- 
ber of the NaI(T1) response functions [63]. 

E, (keV) FWHM (keV) a E Pf Pc Ps Pd P a  

400 
800 
1200 
1600 
2000 
2400 
2800 
3200 
3600 
4000 
4400 
4800 
5200 
5600 
6000 
6400 
6800 
7200 
7600 
8000 
8400 
8800 
9200 
9600 
10000 
10400 
10800 
11200 

39.8 
56.1 
74.3 
90.4 
100.8 
114.0 
125.0 
133.6 
140.0 
144.0 
155.7 
166.9 
177.7 
187.9 
197.7 
206.9 
215.7 
224.0 
231.8 
239.1 
246.0 
252.3 
258.1 
263.5 
268.4 
272.7 
276.6 
280.0 

1 .ooo 
1 .ooo 
0.988 
0.952 
0.880 
0.871 
0.861 
0.852 
0.843 
0.833 
0.824 
0.815 
0.810 
0.810 
0.810 
0.810 
0.810 
0.811 
0.812 
0.813 
0.815 
0.816 
0.817 
0.819 
0.820 
0.825 
0.830 
0.836 

0.5668 
0.4778 
0.3988 
0.3503 
0.3205 
0.3030 
0.2851 
0.2666 
0.2476 
0.2280 
0.2077 
0.2004 
0.1944 
0.1883 
0.1822 
0.1759 
0.1695 
0.1630 
0.1564 
0.1496 
0.1428 
0.1358 
0.1287 
0.1215 
0.1142 
0.1067 
0.0991 
0.0913 

0.4332 
0.5222 
0.6012 
0.6425 
0.6623 
0.6718 
0.6815 
0.6916 
0.7019 
0.7126 
0.7236 
0.7299 
0.7359 
0.7419 
0.7480 
0.7543 
0.7606 
0.7670 
0.7736 
0.7803 
0.7871 
0.7940 
0.8010 
0.8081 
0.8154 
0.8228 
0.8304 
0.8381 

0.0000 
0.0000 
0.0000 
0.0046 
0.0115 
0.0180 
0.0248 
0.0318 
0.0390 
0.0464 
0.0541 
0.0543 
0.0537 
0.0532 
0.0526 
0.0520 
0.0513 
0.0507 
0.0501 
0.0494 
0.0488 
0.0481 
0.0474 
0.0467 
0.0460 
0.0453 
0.0446 
0.0438 

0.0000 
0.0000 
0.0000 
0.0000 
0.0003 
0.0012 
0.0021 
0.0030 
0.0039 
0.0048 
0.0058 
0.0065 
0.0072 
0.0079 
0.0086 
0.0093 
0.0101 
0.0108 
0.0116 
0.0123 
0.0131 
0.0139 
0.0147 
0.0155 
0.0164 
0.0172 
0.0181 
0.0190 

0.0000 
0.0000 
0.0000 
0.0027 
0.0054 
0.0060 
0.0065 
0.0070 
0.0076 
0.0082 
0.0088 
0.0088 
0.0087 
0.0087 
0.0086 
0.0086 
0.0085 
0.0085 
0.0084 
0.0083 
0.0083 
0.0082 
0.0081 
0.0081 
0.0080 
0.0079 
0.0079 
0.0078 

Normalized to 79.9 keV (6%) at 1.33 MeV. 
Normalized to one at 1.33 MeV. This efficiency must be multiplied 

with the discriminator efficiency of the experimental set-up. 
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Figure 5.11: Interpolation of Compton background, taken from Ref. [63]. 

El ,  and E2 are the corresponding energies deposited in the detector. c(E) ,  cl(E1)) and 

cz(E2) are the normalized numbers of counts for the corresponding energy deposited in 

each spectrum. Assuming that the area A is a linear function of the full energy) i.e., 

A = a + bE,, the coefficients a and b can be obtained using the known A1 and A2 in Eq. 

5.12 

(5.13) 

The number of counts c(E)  for the interpolated energy E is 
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(5.14) 

and if we write A(E,) explicitly we obtain 

(5.15) 

Using Eq. 5.15, one can find the number of counts in the interpolated spectrum. The 

backscattering peak appears in the lower energy side of the Compton spectrum, and is 

determined by 

(5.16) 

Thus, for very high y-ray energies Eb.sc. becomes m,2/2 x 250 keV. Finally, the inter- 

polation from zero energy up to the backscattering energy is performed one channel at a 

time using the same channels in C1, C, and C2, independent of the angle. 

5.8.2 The Folding Iteration Method 

Once the response matrix is obtained for all of the y-ray energies, the continuum y-ray 

spectra of the respective excitation-energy windows are unfolded using the folding iteration 

method [63, 641. In the description of the method that follows, we will consider only one 

y-ray spectrum. The observed or folded spectrum (f) can be written as a product of the 

unfolded spectrum (u) and the response matrix (R) 

f =Ru, (5.17) 
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or in a matrix form 

The index from 1 to n denotes the channel number in the y-ray spectrum. &j is defined 

as the detector response in channel i when the detector is hit by -y rays with an energy 

corresponding to channel j. Since the contribution to a specific channel from the full- 

energy events that are registered in smaller channels is zero, all of the elements below the 

diagonal of the matrix R are zero. 

The response matrix and the folded spectrum are already known, and the unfolded 

spectrum remains to be found. The folding iteration method [64] starts with a trial 

unfolded spectrum, and in each iteration, it improves the unfolded spectrum until the 

observed (folded) spectrum is obtained. The method is performed in the following steps: 

1. As a first trial to determine the unfolded spectrum, the observed spectrum ( r )  is 

chosen, 

uo = r .  

2. The first folded spectrum is calculated using Eq. 5.17, 

fo = RuO. 

3. The next trial function is obtained by adding the difference spectrum T - fo to the 

original trial unfolded spectrum, 

u1 = uo + (r - fo). 

4. A new folded spectrum is calculated from f 1  = Rul; again this is used in the next 

trial function, u2 = u1 + ( r  - f '), or in general, 

ui+l ui + (r - fi) 
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where i is the iteration index. The iteration continues until f z  x T .  In this procedure, using 

a response matrix with the experimental energy resolution gives artificial undershoots on 

both sides of pronounced peaks in the unfolded spectrum [63, 641. Therefore, as suggested 

by Ref. [64], the full-width at half maximum for the response matrix is taken as half of the 

experimental FWHM, i.e. FWHMreSP = 0.5 FWHMezP, for the folding iteration method. 

The general shape of the unfolded spectrum obtained this way is reliable, but the 

counts on both side of the prominent peaks fluctuate strongly from channel to channel. 

This is not surprising because finding the numerical inversion of the response matrix in 

u = R-lf is highly unstable. A small variation in R results in a large variation of R-l. 

Therefore, we will use the Compton subtraction method [63] to prevent the oscillations in 

the unfolded spectrum obtained with the folding iteration method. 

5.8.3 The Compton Subtraction Method 

The Compton subtraction method [63] smoothes and subtracts the Compton background 

from the observed spectrum. In this procedure, the unfolded spectrum of the folding 

iteration method is taken as a starting point, and denoted with u o .  

First, the full-energy, single-escape, doubleescape, and annihilation events are folded 

using the detector response; i.e., 

(5.18) 

The pf, p, ,  p d ,  and pa are taken from Table 5.1. The index i represents the channel for the 

full-energy peak, and 2511 and i1022 are the channels having energies 511 and 1022 keV. 

The annihilation events are all registered in channel i511 since the annihilation 511-keV 7 

rays originate in the detector surroundings. 



77 

Next, each of these folded contributions is smoothed with an appropriate energy 

resolution. Note that the energy resolution of the unfolded spectrum in the folding iter- 

ation method was changed with FWHMreSP = 0.5 FWHMezP, and thus the spectrum uo 

has FWHM = dl.02 - 0.52 = 0.87 FWHMezP. Therefore, the ff, fs, and fd spectra are 

smoothed with an additional 0.5 FWHMezP in order to obtain the experimental energy 

resolution (d0.872 + 0.52 M 1). The fa is smoothed with a resolution of 1.0 FWHMezp. 

The spectra smoothing is performed with a Gaussian function by going 60 on each side 

of the centroid. Thus, channels close to the centroid are weighted higher than channels 

away from the centroid. 

The new ff, fs, fd, and fa spectra are then subtracted from the observed spectrum 

T ,  and the Compton background is obtained 

Note that the term fa(&) will be zero unless i = 2511. The Compton background 

makes a relatively large contribution to the detector response. Therefore, the extraction 

of fc(i) with Eq. 5.19 reduces the fluctuations caused by the folding iteration method. The 

spectrum fc still shows strong oscillations due to statistical fluctuations in the observed 

spectrum. Thus the spectrum fc(i) can be smoothed with a large energy resolution, e.g 

1.0 FWHMezP because the Compton background is a slowly-varying function of incident 

y-ray energy. 

Next, the new unfolded spectrum is obtained by subtracting fc, fs, fd, fa from the 

observed spectrum T ,  and dividing it by the full-energy probability 

The new unfolded spectrum has the same statistical fluctuations as the observed spectrum 

as a result of smoothing the Compton part. As a final step the new unfolded spectrum is 
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corrected with the total y-ray detection efficiency 

(5.21) 

where €tot is the total y-ray efficiency taken from Table 5.1 multiplied with the efficiency 

due to the discriminator level of the experimental setup. This efficiency depends on, e.g., 

timing, ADC thresholds, and the absorber material used for the y-ray detectors. 

An unfolded E, vs. E, matrix is obtained for the 56Fe and 57Fe isotopes using the 

folding iteration method followed by the Compton subtraction method. One weakness of 

the unfolding method appears when the full-energy peak obtained in Eq. 5.20 is divided 

by p f  ( p f  < 1). The full-energy peak is a Gaussian peak, and by dividing this peak by p f ,  

we divide every point on the Gaussian with the same pf. Since the error of each channel is 

also divided by the same number this causes fluctuations in the data; this problem cannot 

be easily solved. 

5.9 Extracting Primary y-ray Spectra 

Population of each level in the residual nucleus results in a y-ray cascade, and we are 

interested only in the primary or the first y ray in this cascade. Because the timing 

between the 7 rays in a cascade cannot be resolved experimentally, these y rays are 

observed simultaneously; as a result one cannot know which y ray came first in that 

cascade. The separation of the primary and the rest of the cascade can be achieved by a 

subtraction method [65]. This method will be applied to the unfolded E,-E, matrix. 

The basic idea of extracting the primary y rays is simply illustrated in Fig. 5.12. 

Assume that the 57Fe(3He,a) reaction populates the residual 5sFe nucleus at the level 

Ei, and this level depopulates by a 7 1 7 2 7 3  cascade. The y-ray spectrum fi gated on 

the level Ei in the unfolded matrix will include all of the transitions in this cascade. 

Similarly, if the same reaction populates the level E2 the same number of times (ai = 

az), the corresponding gated spectrum fi includes the 7 2 7 3  cascade. The primary -pray 
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Figure 5.12: Schematic representation of the subtraction method. 

spectrum hi for the level Ei can be obtained by subtracting the spectrum f2 from the 

spectrum fi, as shown in the lower part of Fig. 5.12 

hi = fi - fi. (5.22) 

Clearly, this spectrum includes only the primary y1 rays. In Fig. 5.12, we assumed that 

the cross sections for populating the levels E, and E 2  are equal. In reality, they are 

different. Therefore one must take into account the difference in these cross sections in 

the subtraction method. We can do this using the singles particle spectrum since the 

particles are measured in the singles mode as well as in the coincidence mode. The singles 

particle spectrum is proportional to the reaction yield (note that only those particles 

emitted at the 45" forward direction are measured.) One can find the population of the 
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level E2 relative to the level Ei by simply dividing the respective cross sections 

ai 
0 2  

n=- .  (5.23) 

The spectrum f 2  has to be multiplied by the normalization coefficient n in order to com- 

pensate for the different cross sections 

h. a -  - f .  a - nf2 (5.24) 

For example, if the level E2 is populated half as many times as is the level Ei, the spectrum 

f 2  is multiplied by two. 

Thus far, we assumed only one y transition from the levels El,  E2, and E; for 

simplicity. Of course, an excited state can decay via several different branches, as shown 

in Fig. 5.13. In that case, one needs to generalize the above procedure for additional 

cascades. Assume that the level E, decays by 71, 72, 73, ..., yj with decay probabilities 

wi, wa, wi, ..., wi, respectively. Then one must subtract the 7-ray spectra f' for the 

corresponding levels E' from the spectrum fj to obtain the primary y-ray spectrum for 

the level Ei. Before the subtraction, the spectra f j  have to be weighted with wi. This 

can be written as 

(5.25) 

or in general 

h. - f .  -9. 
2 -  E 2, (5.26) 
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g.s. 

Figure 5.13: y rays depopulating the level Ei. 

where 

(5.27) 

The coefficients w: are closely related to the primary 7-ray spectrum hi. In fact, if the 

spectrum hi is normalized to one, the resulting spectrum gives the coefficients wi., which 

will be called the weighting functions hereafter. 

Figure 5.14 provides an insight toward how this normalization is performed. The 

decay scheme of the level Ei is shown on the left side of Fig. 5.14. Here the population 

cross sections are assumed to be equal for simplicity (ai = 01 = 0 2 ) .  In this case, the 

Ei gated spectrum ji is comprised of 71, 7 2 ,  7 3 ,  74 .  The corresponding peak areas are 

denoted by A I ,  AS ,  A 3 ,  A d .  The sum of A3 and A4 gives the peak area for the primary 7 

rays. The peak areas for those 7 rays that belong to the same cascade will be the same 
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I I  w:=A,/A( h) 

Figure 5.14: Determination of the weighting function. 

in the spectrum fi, i.e., A1 = A4 and A2 = AB. The probability coefficients wi and w; 

are then obtained by normalizing the peak area A3 and Ad, respectively. Because q = 01 

= 0 2 ,  the peak area of the spectrum f1 and f2 is equal to the peak area of the primary 

y rays A(h).  Therefore one multiplies the spectrum f1 and f2 by the corresponding wi 

and w; in the subtraction method. Then the resulting spectrum gives the primary y rays, 

as shown in Fig. 5.14. In all of these three examples we chose the y rays well separated 

for convenience. Of course, in reality the y-ray spectrum and the weighting function 

have a continuum structure due to the large number of levels at higher excitation energy. 

Therefore the subtraction is performed channel by channel. 

Because the hi and the wj are closely related, one could start with a trial weighting 

function and calculate the hi until the trial weighting function converges. In fact, this 

iteration process is proven to converge very fast in Ref. [65]. Furthermore, this method 

has been tested using different trial weighting functions [65]. It is shown that the shape 

of the primary y-ray spectrum remains almost the same for different weighting functions 
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although the area is subject to change [65]. In order to account for an improper choice of 

weighting function, an area correction is applied to Eq. 5.26 

If the area of the spectrum hi equals the area of the spectrum fi minus the area of the 

spectrum gi, then the coefficient Q would be one. The determination of a can be found in 

Appendix C. 

The algorithm followed in the code is the following: 

1. start with a trial weighting function, for example, the detector response, 

2. calculate hi from Eq. 5.28, 

3. transform hi to w;, 

4. if wi x wj(old), then the hi calculated from Eq. 5.28 with the new wj  give the 

primary 7-ray spectrum for the level Ei. Otherwise, proceed with step 2. 

Step 3 needs some explanation. First, note that the unfolded matrix is a t w e  

dimensional matrix. The calibration on each dimension (E7 and E,) is different because 

the experimental gain and shift for the NaI(T1) and Si detectors are different. The spectra 

hi have the E, calibration. However, in the calculation of gi in Eq. 5.27 we consider 

the y-ray energy as being the energy difference between the initial and the final levels, 

meaning that the E, calibration is used. Therefore, one needs to change the calibration 

of the spectra hi from the E, calibration to the E, calibration in Step 3. This is done 

with a subroutine in the code. Finally, the calibrated spectra hi are normalized to one, as 

explained with Fig. 5.14, in order to obtain the next trial spectra wi. 

The subtraction method relies on a number of assumptions. The main assumption 

is that the y-ray decay pattern from any excitation-energy bin is independent of the 

population mechanisms, i.e., populated directly by the (3He,a) or (3He,3He') reactions or 
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populated indirectly by a y-ray decay that originates in higher excited states following the 

initial nuclear reaction. This is presumably fulfilled if 

1. full thermalization is achieved, 

2. the reaction populates approximately the same spins at each excitation interval, 

3. there are about equal numbers of positive and negative parity states populated in 

each interval. 

The (3He,cr) reaction is a direct neutron pick-up reaction. The reaction takes place 

through the single neutron components of the wave function of the target nucleus. The 

formation of a complete eigenstate is assumed to be a very fast process (M compared 

to the time necessary for photon emission (x Then the excited nucleus forgets 

how it was formed, and the decay process is statistical. Thus the full thermalization is 

expected to occur. However, this is not necessary as long as the decay pattern of states 

remains unchanged independent of the way the states were formed. Due to strong single- 

particle effects at low excitations, the photon emission is not statistical, but affected by 

the discrete structure. Therefore, the low-lying levels will not be used in obtaining the 

level density and the y-ray strength function. 

The second and third assumptions are investigated in Ref. [66] in detail. Here 

only the conclusions drawn in Ref. [66] will be mentioned. In order to obtain information 

about the spin distribution for each excitation energy interval, the intensity of the ground- 

state band feeding is investigated as a function of excitation energy [66]. This method 

is described in Refs. [67, 681. In each step in the cascade the spin distribution becomes 

wider, but the average spin remains approximately constant. With an average statistical 

multiplicity of 3 or less, the side feeding to the ground-state band is expected to reflect 

the initial spin distribution. It was shown that the intensity of the side feeding to the 

ground-state band transitions remains approximately the same over all excitation energies 

[66]. Therefore it is concluded that the spin population is approximately the same over 

the energy region under consideration [66]. 
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The dominance of the El  dipole transitions from the states populated in the con- 

tinuum results in successive parity changes in the cascade. As a result, y transitions 

subtracted from the y-ray spectra in the subtraction method originate in states with op- 

posite parity. There is no problem if the population of both parities is approximately 

equal. In fact, this was found to be the case for low excitation energies [69]. One may 

expect this to be approximately true over the entire energy range due to damping of the 

single-particle strength. In addition, even a small portion of M1 transitions would reduce 

this possible problem [66]. However, one cannot completely justify the arguments of Ref. 

[66]. Spin and parity effects should be investigated further, and may result in corrections 

to the subtraction method. 

The raw, unfolded, and primary y-ray spectra itre displayed in Fig. 5.15 for 5sFe 

(top panels) at 5.0-MeV excitation energy and 57Fe (bottom panels) at 6.2-MeV excitation 

energy. 
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Figure 5.15: Raw (left), unfolded (middle), and primary (right) 7-ray spectra 
at E, = 5.0 MeV for =Fe (top) and at E, = 6.2 MeV for 57Fe (bottom). 
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Experimental Results on 56Fe and 57Fe 

6.1 Level Densities 

The level density and radiative strength function for 56Fe and 57Fe are extracted from the 

experimental primary y-ray spectra assuming the Axel-Brink hypothesis. This method 

has already been described in Chapter 3. Recall that both the level density and 7-ray 

strength function obtained from the x2 minimization is only one solution among an infinite 

number of solutions that reproduces the primary 7-ray matrix. The most probable solution 

is found by normalization to known data [70]. The details of this procedure are given here. 

It has been proven in Appendix A that all solutions are related to each other by the 

transformation 

where A, B,  and a! are free parameters, T and p are one of the solutions obtained from the 

least x2 method, and and f i  are the other solutions. In order to find the most physical 

level density and 7-ray transmission coefficient, say f i  and F,  one needs to determine 

appropriate parameters A,  B,  and a. 

We use two anchor points for normalization of the level density: the known dis- 

86 
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Crete levels at  low excitation energy and the level density at the neutron binding energy 

determined from the neutron-resonance data. The parameter a determines the slope of 

the level density p and the y-ray transmission coefficient T.  The parameters A and B 

determine the magnitude of p and T ,  respectively. Thus one needs to determine both the 

slope (the parameter CY), and the magnitude (the parameter A )  for the level density and 

the parameter B for the y-ray strength function. 

In the top panel of Fig. 6.1, the known discrete levels per excitation-energy bin 

(238 keV) are shown as a histogram. The excitation-energy region between the arrows 

are used for the normalization. States below 2 MeV are not included, since statistical 

assumptions break down in the region close to the nuclear ground state. The level density 

at the neutron binding energy is shown as an open triangle in the lower panel of Fig. 

6.1. Unfortunately the experimental level density cannot be directly compared to the 

level density at the neutron binding energy (Eln), since the level density is measured up 

to E, = B, - 1.5 MeV. Therefore, we extrapolate the experimental level density to the 

neutron binding energy using the back-shifted Fermi gas model 

where the back-shift parameter is given by E1 = C1 + A, and the parameters a and C1 

are calculated using von Egidy 's parameterization [71] 

a = 0.21A0.87 MeV-1 

c1 = -6.6A-0.32 MeV. 

Furthermore, the parameter A is calculated from the mass formula [72], and the spin-cutoff 

parameter of Gilbert and Cameron [6] is employed 
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Figure 6.1: Normalization of the 57Fe level density. The known discrete 
levels are shown as a histogram in the top panel. The open triangle in 
the lower panel gives the level density at the neutron binding energy B,. 
The normalized experimental level density is shown by solid circles. The 
factor f is obtained by a comparison between the level density calculated 
from the Fermi gas model and the experimental level density at B,. The 
solid line is obtained by extrapolating the experimental level density to 
B, using the Fermi gas model. 



89 

In order to extrapolate the experimental level density, first the level density calcu- 

lated from the Fermi gas model is compared with the level density at the neutron binding 

energy. Then the Fermi-gas level density is multiplied by the factor (0.31) obtained from 

this comparison, thus, is forced to match the neutron resonance data. The extrapolated 

level density in the excitation-energy region between 5.4 MeV and 6.1 MeV is used for the 

normalization procedure. The data points in both panels in Fig. 6.1 are the normalized 

experimental level densities. The Fermi-gas extrapolation of the level density is shown by 

a solid line. 

Similarly, known discrete levels in "Fe are shown as a histogram in Fig. 6.2. Since 

55Fe is an unstable nucleus = 2.73 y), there is no available neutron-resonance data 

for the 56Fe isotope. Therefore, the level density in 56Fe is normalized using information 

from the neighboring 57Fe isotope. The normalization is performed by applying the factor 

f, obtained by comparing the level density at B, in 57Fe with the one calculated from 

the Fermi gas model using von Egidy's parameterization, to the von Egidy Fermi-gas 

level density of "Fe. The data points between the arrows in Fig. 6.2 are used for the 

normalization. 

The normalization parameters A and a for the level density are determined by fitting 

the ratio f i  / p with the transformation function Aexp(a(E, - ET)). Once A and a are 

found from the fit the normalized level density is simply obtained by multiplying p by the 

transformation function A exp(a(E, - E?)). 

The normalized level densities for 56Fe (solid circles) and 57Fe (open circles) are 

shown in Fig. 6.3. The open triangle at E, = 7.646 MeV is the level density at Bn for 

57Fe. The normalized Fermi-gas level density, shown by solid lines, describes the shape 

of the experimental data quite well in this energy region. The fact that the level density 

in 57Fe is higher than the one in "Fe is the result of the unpaired neutron in 57Fe. A 
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Figure 6.2: Same as Fig. 6.1 in 56Fe. The factor f = 0.31 in the 57Fe case 
is employed in the normalization of the 5sFe level density. See text for 
details. 
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Dobaczewski et al. 
Bohr and Mottelson 

common feature for both "Fe and 57Fe in Fig. 6.3 is the step structure in the level density 

at low E,. Discrete-level effects are also pronounced in "Fe at low excitation energy. 

For example, the first bump at 847 keV corresponds to the first excited state (see Fig. 

6.2), and the second excited 4+ state appears at around 2 MeV. Between 2- and 3-MeV 

excitation energies, a rather flat plateau-like behavior is observed, then a step follows this 

plateau at around 3 MeV. This step structure is a signature for the first pair breaking in 

56Fe, and can be associated with the predicted pairing-gap parameter A. The parameter 

A is calculated using two different approaches, one is taken from Bohr and Mottelson [72], 

which uses a four-mass indicator, and the other is taken from Dobaczewski et al. [73], 

which uses a three-mass indicator. Simple arguments made in Ref. [73] show that one can 

avoid mixing the contributions from single-particle structure and pairing correlations by 

using the three-mass indicator for odd-N and odd-2 nuclei. Higher-mass indicators mix 

the pairing and single-particle contributions to odd-even mass staggering. Since only the 

pairing contribution is of interest, the values calculated from Ref. [73] are adopted in Fig. 

6.3. The calculated pairing gap parameters are listed in Table 6.1 for both isotopes. 

t.\ y . " \  , 
0.82 2.27 
1.27 2.93 

Table 6.1: The pairing gap parameters calculated from the Dobaczewski 
et al. [73] and Bohr and Mottelson approaches [72]. 

I A,(MeV) - 57Fe A, + A,(MeV) - 56Fe 

The first pair breaking is expected at Ap + A, in 56Fe. The calculated Ap + A, is 

approximately 0.5 MeV below the energy of the first step at around 3 MeV. This is within 

reasonable agreement with the interpretation of the first pair breaking because, in addition 

to the pairing energy, an energy on the order of the single-particle energy is required in 

order to break one pair and excite one of the nucleons into the lowest unoccupied single- 

particle state. The step structures associated with further pair breaking become less and 

less distinct with increasing excitation energy. 

The discrete structure at low excitation in 57Fe is not as pronounced as in 56Fe. 

Again this is because of the unpaired neutron in 57Fe. It is commonly believed that 
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Figure 6.3: Level densities for 56Fe and 57Fe. 

neighboring odd-odd, odd-even, and even-even isotopes reveal the same level density if a 

proper shift is applied to the excitation energy [74]. The step structure at around 2 MeV 

in 57Fe would then correspond to the step observed at around 3 MeV in 56Fe, taking into 

account an energy shift of about 1 MeV. Accordingly, the step at 2 MeV is interpreted as 

the first pair breaking in 57Fe. 

6.2 Radiative Strength Functions 

Once the parameter cy in Eq. 6.1 is obtained from the level density normalization, the slope 

of the y-ray transmission coefficient is fixed by multiplying T in Eq. 6.1 by the function 
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Figure 6.4: ^/-ray transmission coefficient for 5sFe. 

exp(aE,). In Figs. 6.4 and 6.5, the y-ray transmission coefficients with corrected slopes 

are shown for 56Fe and 57Fe isotopes, respectively. The magnitude, i.e., the normalization 

constant B in Eq. 6.1, is determined using the average total radiative width of neutron 

resonances. Unfortunately, there is no experimental neutron-capture data for 56Fe, and 

thus no average total radiative width of neutron resonances. Therefore, the parameter B 

cannot be determined for 56Fe. Here we will describe the normalization procedure for the 

57Fe isotope. 

The y-ray transmission coefficients T'L(&) for multipole type X L  are related to 

the corresponding strength function by 
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Figure 6.5: y-ray transmission coefficient for 57Fe. The solid line is the 
extrapolation of the y-ray transmission coefficient T using the data points 
between the arrows. See text for details. 

In general, the main contribution to statistical nuclear decay is from electric dipole (El) 

and magnetic dipole (Ml) transitions. Here, we assume only El and M1 dipole contri- 

butions to the photon strength. In addition the number of positive and negative parity 

states is taken as equal 
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Combining the El and A41 dipole strengths and the experimental y-ray transmission 

coefficient in Eq. 6.5 yields 

where the slope of the experimental y-ray transmission coefficient T is already corrected. 

The parameter B is determined from the average total radiative width of compound states 

(I'7), The experimental (r,) with excitation energy E ,  spin I, and parity ll can be written 

in terms of f x ~ ( E - 0  [35] 

The summations and integration are over all final levels with spin 1, and parity IT, which 

are accessible by 7 radiation with energy E,, and multipole type X L .  The average total 

radiative width of neutron s-wave capture resonances with spins I, f 1/2 can be written 

by combining the two assumptions given in Eqs. 6.6 and 6.7 in the general expression Eq. 

6.8. This gives 

where It and are the spin and parity of the target nucleus in the (n, 7) reaction, and p is 

the experimental level density. Furthermore, the level density is expressed as the product 
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of the total level density and a spin distribution factor g.  The factor g is given by [6] 

2 I + l  (I + 1 / q 2  I, g p ,  I) = ~ expi- 2a2 2a2 
(6.10) 

and is normalized to CIg x 1. u is the spin-cutoff parameter. As mentioned earlier, y 

rays below 1.5 MeV are removed from the primary y-ray matrix. Therefore, the y-ray 

transmission coefficients below E, < 1.5 MeV and the level densities above E, > B, - 1.5 

MeV are extrapolated using an exponential function. The data points between the arrows 

in Fig. 6.5 are used for the extrapolation. The contribution from the extrapolation to the 

total radiative width does not exceed 15% [53]. 

All of the parameters in Eq. 6.9 are known except the normalization constant B 

for 57Fe. Thus we can easily find B. The parameter (I'(E,)) for 57Fe is taken from Ref. 

[42]. Once the normalization constant I3 is obtained, the sum of the electric and magnetic 

dipole strengths is determined from Eq. 6.7. Radiative strength functions for 5sFe and 57Fe 

are shown in Figs. 6.6 and 6.7, respectively. Note that the y-ray strength function in "Fe 

is given in arbitrary units; the slope is correct, but the magnitude remains undetermined. 

The radiative strength function (RSF) increases with increasing y-ray energy above E, 

= 4.5 MeV in 56Fe, as observed in rare-earth nuclei [51, 52, 531. The RSF for 57Fe 

reveals a rather flat structure above E, = 4 MeV. In general, the RSF is expected to 

decrease with decreasing 7-ray energies [51, 52, 531. In 56Fe, the radiative strength has 

a minimum at around 4.5 MeV energy, and increases with decreasing y-ray energy. A 

similar enhancement at low energies is observed in 57Fe. We do not believe that this is an 

artifact of the data reduction since the same behavior was observed in 27*28Si (see below). 

The RSF might depend, in addition to E,, on another parameter of a different origin, 

such as temperature. 

The experimental RSFs are compared with model calculations. Again for the model 

calculations we assume that the 7-ray strength is dominated by dipole transitions. For 

the El strength, we use two different descriptions: the Lorentzian giant electric dipole 
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Figure 6.6: Radiative strength function for 5sFe. The experimental RSF 
(data points) is given in arbitrary units. The models KMF+GMDR and 
GEDR+GMDR are in absolute units, see text for details. 

resonance (GEDR) model, and the KadmenskiY-Markushev-Furman (KMF) model [38]. 

The first model is based on Brink's hypothesis, which assumes that giant resonances built 

on the ground state as well as those built on any excited state have the same size and 

shape, and the GEDR is expressed as 

(6.11) 
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Figure 6.7: Radiative strength function for 57Fe. 

where c r ~ 1 ,  rE1, and E E ~  are the standard giant electric dipole resonance parameters 

derived from photoabsorption experiments. 

In the KMF model [38], the Lorentzian expression is modified in order to reproduce 

the nonvanishing tail of the GEDR as ET + 0 by introducing a temperature dependent 

width of the GEDR. This model 

fEl(Ey) = 

is given by 

(6.12) 
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where T = ,/(Eln - E, - El ) /a  is the nuclear temperature in the case of thermal neu- 

tron capture, B, represents the neutron binding energy, a is the Fermi gas level density 

parameter, and E1 is the back-shift parameter. The energy and temperature dependent 

width of the GEDR in this model is expressed by 

(6.13) 

For the M1 strength, we use a Lorentzian model based on the existence of the M1 

giant dipole resonance (GMDR), which is assumed to be related to shell-model spin-flip 

transitions between 1 f single-particle states [72] 

(6.14) 

In this expression, the Lorentzian damping width is described as independent of photon 

energy and temperature. 

The GEDR and GMDR parameters are taken from the global parameterization of 

Ref. [42] for spherical nuclei ( A  > 50). The temperature in Eq. 6.12 is calculated from 

T (MeV) = J(B, - 2 - E, - &)/a. In this expression B, - 2 MeV gives the average 

excitation energy from which primary y rays are emitted since an excitation-energy region 

B, - 4 MeV was used in extracting the level density and RSF. The resonance peak cross 

section C T M ~  is adjusted in order to produce f ~ l / f ~ 1  = 0.0588A0.878 at E, = 7 MeV. 

The calculated El and M1 strengths are summed together for comparison with 

the experimental data. These models using different descriptions for the E l  strength 

are denoted by GEDR+GMDR and KMF+GMDR in Figs. 6.6 and 6.7. The average 

contribution of the GMDR strength to the total strength over all the y-ray energies is 

approximately 20%. The slope of the RSF for both 5sFe and 57Fe is reproduced with the 

KMF+GMDR models above E, = 4.5 MeV, as well as with the GEDR+GMDR models. 

Below E, = 4.5 MeV, the KMF model tends to follow the data better. Although the KMF 
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model predicts the finite value of the RSF as E, + 0, it does not reproduce the upward 

bend at  low ET [38]. 

A similar enhancement at low E, is also observed in 27728Si [75] and 96197M~ iso- 

topes [76]. For 28Si levels, level lifetimes, and y-decay branching ratios are known up 

to EZ = 9.6 MeV from discrete y-ray spectroscopy. The y-ray transmission coefficient 

for 28Si was calculated from the known lifetimes, and compared with the experimental 

data [75]. Surprising agreement between the experimental and calculated values of the 

y-ray transmission coefficient leads us to speculate that the low-energy decay strength in 

medium-weight and light nuclei is anomalously stronger than the corresponding strength 

in the heavy nuclei. 

The presence of this anomaly in the decay strength can be investigated by extracting 

the multiplicity of the y rays from different excitation energies. This has not yet been 

done. If the multiplicity of the y rays is high, this would provide more confidence that y 

rays with low energies are preferred in the decay scheme, and that the observed effect is 

not an artifact of the subtraction method. 

6.3 Level Densities and yray Strength Functions for Rare-Earth Nuclei 

The method to extract the level density and y-ray strength function was first applied to 

rare-earth nuclei. These heavy nuclei are deformed and their level density is relatively 

higher. 

The level densities for 1487149Sm (2 = 62) [52], 161?162Dy (2 = 66) [77], 1663167Er (2 

= 68) [51], and 1717172Yb (2 = 70) [77, 541 isotopes are shown in Fig. 6.8. The experiments 

with these rare-earth nuclei were performed for a longer period of time, and thus have much 

better statistics than the present experiment. Therefore, the level density was extracted 

per 120-keV bin as opposed to 238-keV bin for the iron isotopes. 

The level density in these rare-earth nuclei is higher than the level density in the iron 

isotopes by a factor of three orders of magnitude. This is not surprising: the mass number 

of the rare-earth nuclei is about three times the mass of the iron isotopes. Thus, the large 

number of particles opens more degrees of freedom for the nucleus for a given excitation 
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Figure 6.8: Level densities for rare-earth nuclei. 

energy. It has been shown from the systematics [72] that the level density parameter a 

is proportional to the mass number. The level density parameter essentially determines 

the slope of the level density. Therefore, changing this parameter from a x 7 M e V 1  for 

the mass A = 50 - 60 region to a x 20 MeV-' for the mass A = 160 - 170 region results 
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in a three-orders-of-magnitude increase in the level density. In addition, the level density 

depends on shell effects and odd or even number of particles. 

Similar step-like structures are observed in these heavy nuclei. At low excitation 

energies, discrete structures are prominent, particularly in the even-even rare-earth nuclei. 

The density of levels increases more smoothly at higher excitations. 

The radiative strength functions for these rare-earth nuclei are shown in Fig. 6.9. 

A common feature in all of these nuclei is that the radiative strength increases as the 

y-ray energy increases. The enhancement observed at the low y-ray energies in light and 

medium-weight nuclei is not observed in these heavy nuclei. Another common feature in 

Fig. 6.9 is the bump at low y-ray energies. This bump is shifted to higher energies with 

increasing mass number. In fact, previous work [46] shows that the energy of the bump 

increases with neutron number in the N = 82-126 region. This anomalous structure was 

observed in the y-ray spectra of the (n, y) and (d,p-y) reactions at low energies [46, 47, 48, 

49, 501. The bump is called the pygmy resonance due to its considerably lower strength 

compared to the GEDR. The pygmy resonance was first interpreted as the enhancement of 

the El strength function [46]. However, a possible M1 character (scissors mode) connected 

to orbital M1 strength cannot be ruled out. A twestep cascade (n ,2y )  experiment was 

performed in order to determine the multipolarity of this resonance in 172Yb. In such 

an experiment, the spin and parity of the initial state is known. The two-step y rays 

decay into a low-lying state with an opposite parity to that of the initial state. These 

y rays are recorded in coincidence by requiring that the sum of the energy of the two 

y rays corresponds to the difference between the neutron binding energy and the energy 

of the chosen final state. Therefore, the deexcitation by two y-ray transitions has to 

involve one electric- and one magnetic-dipole transition. The intensity and the spectral 

distribution of these two y-ray transitions then provide an answer, after comparison with 

model calculations, whether the resonance structure at  low frequencies is of electric- or 

magnetic-dipole character. The data analysis of this experiment continues. 
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Figure 6.9: y-ray strength functions for rare-earth nuclei. 

6.4 Thermodynamic Properties 

The concept of temperature is used to characterize a system in equilibrium. Other 

features include the energy and the density of states. In general temperatures are measured 

by comparing the system temperature to temperature standards by bringing the system 
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into thermal contact with a thermometer. The thermometer is small and does not per- 

turb the macroscopic system significantly. Such a procedure is not applicable for nuclear 

systems, which have a very small size. For nuclear systems, information on temperature 

is conveyed through the emission of particles after the system reaches its equilibrium. An 

annual review by Morrissey et al. [78] focuses on some methods of nuclear temperature 

measurements in nuclear reactions. These experimental methods for temperature determi- 

nation involve examination of the kinetic energy spectra of emitted particles, their relative 

number, and their excited state population. 

Here we do not measure the temperature of the nucleus, but instead measure the 

multiplicity of states R(E), which is proportional to the experimental level density p(E) .  

Then we study how the nucleus behaves if it is connected to a heat reservoir with a tem- 

perature T using thermodynamic equations. The relationship between the temperature 

and the excitation energy of the system can be investigated using either the caloric curves 

derived within the statistical ensembles or the probability density function. 

6.4.1 Caloric Curves in Microcanonical and Canonical Ensembles 

Depending on the system under study, one can chose among different kinds of sta- 

tistical ensembles in order to derive thermodynamic quantities. These ensembles are 

discussed in Chapter 2. The thermodynamic quantities derived within different ensem- 

bles give the same results in the thermodynamic limit. On the other hand, the choice 

of a specific ensemble may change results significantly for small systems. For example, 

the caloric curves derived within the microcanonical and canonical ensembles coincide for 

large systems; but the two caloric curves depart from each other for small systems. This 

fact is illustrated with a simple model in Appendix D. 

The microcanonical ensemble is usually considered to be well-suited for atomic nu- 

clei. Since the nuclear force has a very short range and a nucleus normally does not share 

its excitation energy with its external environment, a nucleus is usually considered as an 

isolated system. However, some thermodynamic quantities such as temperatures and heat 

capacities may have large fluctuations and negative values when derived within the micro- 
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Figure 6.10: 
microcanonical (data points) and canonical (solid line) ensemble. 

Experimental caloric curves for 5sFe derived within the 

canonical ensemble (e.g. Refs. [51, 521). This is also true for 56*57Fe, as is shown below. 

On the other hand, the canonical ensemble averages too much over structural changes of 

the system. Therefore, it is difficult to chose an appropriate ensemble for a small system. 

Here, we use both the microcanonical and canonical ensembles to derive the caloric curves 

in 56Fe and 57Fe and compare the results derived within both ensembles. 

The caloric curves for 56Fe and 57Fe are shown in Figs. 6.10 and 6.11, respectively. 

The data points represent the microcanonical caloric curve (MCC), and the solid line 

represents the canonical caloric curve (CCC). 
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Figure 6.11: Same as in Fig. 6.10 except for 57Fe. 

The MCC is defined as 

(6.15) 

The entropy is given by S = lnR(E) = lnp(E) + SO, where the Boltzmann constant is 

set to unity for simplicity. The normalization constant So can be adjusted to satisfy the 

third law of thermodynamics: when the temperature T --+ 0, the entropy S --+ 0. The 

constant So is not important in this discussion since it vanishes when taking the derivative 

of the entropy. Small changes in the entropy give rise to large contributions and negative 

values in the temperature T due to the differentiation. In order to reduce this sensitivity, 

the differentiation of S is performed by a least x2 fit of a quadratic polynomial to five 
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adjacent data points at a time. Thus, this procedure smoothes an approximately 1.0-MeV 

range. Since the particle-energy resolution is around 0.4 MeV, the differentiation removes 

some potential information. The error bars in MCC should not be considered as statistical 

errors since they reflect the fluctuations caused by the differentiation of the entropy S. 

The caloric curve in the canonical ensemble is expressed as 

where the partition function in the canonical ensemble is given by 

(6.16) 

(6.17) 

The partition function is simply the Laplace transform of the multiplicity of states R(E) = 

AEp(E),  where p(E)  is the level density of accessible levels at the energy E given in energy 

bins AE.  Application of the Laplace transform in Eq. 6.17 smoothes much of the structure 

contained in the microcanonical level density (see Figs. 6.10 and 6.11). This significant 

averaging over structural changes in the canonical ensemble is caused by the integration 

in the calculation of the partition function. This smoothing effect can be quantified for 

the thermal average excitation energy, which is given by 

using the standard deviation DE = d m .  The standard deviation gives (TE = 5 

MeV at ( E )  = 6 MeV. Thus, the structures observed in the thermodynamic observables 

in the microcanonical ensemble are not apparent in the canonical ensemble. 

We should also note that the integral in the partition function is defined from zero 

to infinity. However, our experimental level density goes up to around the neutron binding 
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energy. Therefore, the level density is extrapolated from about the neutron binding energy 

up to 150-MeV excitation energy using the Fermi gas model. The 150-MeV upper limit is 

sufficiently high for the integrand to vanish for small temperatures. 

In Figs. 6.10 and 6.11, it is clear that the MCC lies mostly above the CCC (note that 

the error bars in the MCC reflect the fluctuations of the differentiation.) The statistical 

errors in the CCC are very small due to the Laplace transform of R(E). 

The CCCs for “Fe and 57Fe are shown in Fig. 6.12 for comparison. The temperature 

T ( E )  curve for 57Fe is approximately 10% higher over all the energies than the temperature 

in 56Fe. We employ the CCCs when deriving the heat capacity in these nuclei. 
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Figure 6.12: Canonical caloric curves for 56957Fe. 

The caloric curves for small systems are only approximations because the energy of 

the system is quite uncertain for a given temperature (see the next section). Furthermore, 
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the caloric curves for small systems do not always give the most probable values of the 

system, but sometimes give the least probable values. This is illustrated in Appendix D 

first for a simple example, and then for 56Fe. 

6.4.2 Probability Density F'unction 

Another way of studying the energy-temperature relation of a system is the proba- 

bility density function (PDF), which is the probability of the system having energy E for 

a given temperature T ,  and is given by 

(6.19) 

The multiplicity of states R(E) is an increasing function of energy E ,  and exp(-E/T) 

is an exponentially decreasing function of E. Thus the product R(E)exp(-E/T) has a 

maximum. In the thermodynamic limit, or for large systems, this product is very sharp 

- similar to a S function. However, for small systems the multiplicity of states is much 

smaller, which makes the probability distribution broader, as shown in Fig. 6.13 for 56Fe. 

In Fig. 6.13 the PDF for 5sFe is shown for temperatures T = 1 MeV and T = 1.5 

MeV. The solid line separates two regions where the experimental and the extrapolated 

level density are used in the calculation of the probability P(E).  The data region shows 

the dynamics of the level density, while the extrapolation region does not show the same 

structure since the Fermi-gas level density is a smooth function of energy. Clearly, the 

probability distribution is mostly weighted by the experimental data for T < 1 MeV. For 

increasing temperatures, the energy of the system increases; therefore, the PDF depends 

more and more on the extrapolated level density. 

In general caloric curves are constructed by replacing the distribution of energies 

(temperatures) for a given temperature (energy) by the most probable value. For large 

systems this procedure gives satisfactory results. However, for small systems the energy 

of the system has a broad distribution for a given temperature and the probability distri- 

bution may have more than one maximum for a given temperature. Therefore the caloric 
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Figure 6.13: Probability density function for 56Fe. 

curves for small systems are only approximations. The caloric curves for small and large 

systems are compared in Appendix D using a two-dimensional P(E,  2") distribution. 

6.4.3 Heat Capacity 

The nuclear heat capacity is a measure of the degrees of freedom. It is given by 

..=(E) V 7 (6.20) 

where E is the average energy of the system determined by the caloric curves (see Fig. 

6.12). Since double differentiation of the entropy in the microcanonical ensemble intro- 

duces large fluctuations in the heat capacity, the nuclear heat capacity is derived only 
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Figure 6.14: Experimental and theoretical heat capacities for "Fe derived 
within the canonical ensemble. 

using the canonical ensemble. The heat capacity in several iron isotopes has been calcu- 

lated by Liu and Alhassid using the shell model Monte Carlo (SMMC) approach with a 

complete (pf + 099,~) shell [23]. In Figs. 6.14 and 6.15 the theoretical and experimental 

heat capacities are plotted for "Fe and for 57Fe. However, one cannot directly compare 

the experimental and theoretical results, since the theoretical calculations were performed 

using the state density, and the experimental heat capacity is obtained using the level 

density. The relation between the state and the level density is given by 

(6.21) 
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Figure 6.15: Experimental and theoretical heat capacities for 57Fe derived 
within the canonical ensemble. 

where W ( E )  is the state density, which includes all of the magnetic substates. The t h e  

oretical and the experimental heat capacities have local enhancement at different tem- 

peratures, 0.7 MeV and 1.3 MeV, respectively. The saturation above this enhancement 

in the model calculations is an artifact of the finite model space. Thus, as the tempera- 

ture increases, the nucleons cannot be scattered across high energies since there are not 

enough single-particle levels to excite. Therefore, the heat capacity would eventually turn 

over and go to zero at high temperatures. This effect is known as the Schottky anomaly 

in the heat capacity [79]. In the new shell model Monte Carlo calculations, continuum 

contributions are taken into account and the Schottky anomaly disappears [80]. 

The difference between the experimental and theoretical heat capacities might be 

due to the uncertainty in the spin cut-off parameter which is used in the description of 
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the density of levels of given angular momentum J at a given energy. The spin cut-off 

parameter is not known. 

The experimental heat capacity for 5s757Fe exhibits an S shape. This has been 

interpreted as a fingerprint of a second-order phase transition from a phase with strong 

pair correlations to a phase with weaker pairing correlations [81]. However, it is difficult 

to draw a quantitative conclusion. The shoulder in the theoretical heat capacity is also 

interpreted as a pairing transition [23]. Furthermore, the number of J = 0 pairs were 

calculated as a function of temperature in SMMC. A rapid suppression of the number of 

neutron pairs was correlated with the shoulder observed in the heat capacity [23]. 

In Fig. 6.16 we show the sensitivity of the experimental heat capacity to the uncer- 

tainty in the slope of the level density. Since the level density at the neutron binding energy 

has an uncertainty (the level density for 57Fe at B, is 1070 f 160 MeV-'), we take the 

upper and lower uncertainty limit in calculating the experimental level density. Further- 

more changing the lower excitation energy region in the normalization procedure affects 

the slope of the level density. By considering the uncertainties at B, and low excitation- 

energy region, we determine the level density with a maximum lower and higher slope. In 

Fig. 6.16 the heat capacities calculated using the extrema1 slopes of the lower and higher 

level density are shown in 57Fe. The change in the slope of the level density does not 

affect the heat capacity at low (2' < 0.4 MeV) and at high (T > 2 MeV) temperatures. 

In between these temperatures the maximum change in the S shape of the heat capacity 

does not exceed 5%. 
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/ C H A P T E R 7 1  
Summary and Outlook 

7.1 Summary and Conclusions 

Nuclear level densities and radiative strength functions play a crucial role for applied 

nuclear reaction model calculations. Level densities for many nuclei are known at low 

excitation energies from counting discrete levels, and at the neutron binding energy B, 

from counting neutron resonances. Between those energies the level density is usually 

obtained by interpolating experimental data using phenomenological models such as the 

Fermi-gas model. 

A method developed by the Oslo Cyclotron group fills the gap between low and high 

excitation energies by extracting the level density from zero to close to the neutron binding 

energy. This extraction method relies on the primary y-ray spectra, and also provides a 

simultaneous determination of the radiative strength function (RSF). The method has 

been applied to study several rare-earth nuclei, which are deformed and have high level 

densities. The method works well in the heavy-mass region. 

The primary motivation of this dissertation was to apply and test the method in a 

lighter mass region where the level density is relatively low. We studied 5sFe and 57Fe. 

The iron isotopes are of particular interest since they are the seed nuclei for the synthesis 

of the heavy elements by the s and T processes. In addition the heat capacity of several 

iron isotopes was recently calculated by Liu and Alhassid within the shell model Monte 

Carlo method; a signature of a pairing phase transition in the heat capacity was identified, 
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and was correlated with the suppression of the number of spin-zero neutron pairs with 

increasing temperature. 

The experimental primary y-ray matrix for 56Fe and 57Fe, which gives a primary 

y-ray spectrum for each excitation-energy bin of the residual nucleus, is obtained using 

light-ion reactions. It is important that a large number of states of the residual nucleus 

is populated. This is accomplished by the 57Fe(3He, a y )  and 57Fe(3He, 3He’y) reactions 

in a single experiment. The (3He, cyy) reaction is particularly well suited since the wave 

function of the neutron hole state left in the target nucleus is fragmented over a large 

number of single-particle states. The 7 rays and particles were detected with the CACTUS 

detector array, which consists of 28 NaI(T1) detectors and 8 Si(Li) particle telescopes. 

From recorded particle-y coincidences, the total y-ray cascade spectrum is constructed 

with respect to the initial excitation energy of the residual nucleus. These spectra are 

unfolded using a Compton subtraction method. The primary y-ray spectra are then 

obtained by applying a subtraction method, which subtracts the second- and higher-order 

y rays from the total y-ray cascade spectrum of the corresponding excited state. 

The experimental primary y-ray matrix is the starting point to extract the level 

density and the radiative strength function. This matrix is factored according to the 

Axel-Brink hypothesis as a product of the level density p at the final energy and the 7- 

ray transmission coefficient T. Neither p nor T is known a priori. There are an infinite 

number of solutions for this factorization. One of the solutions is found by applying a 

least x2 fit to the primary y-ray data through an iterative procedure. All of the solutions 

are related to each other by the multiplication of an exponential function to any arbitrary 

solution. Using this relation, the solution obtained from the x2 fit is normalized to the 

known discrete states at low excitation energies, and to the neutron resonance data at the 

neutron binding energy. The radiative strength function normalization is performed using 

the average total radiative width of neutron resonances. 

One of the most interesting findings of the present work is the step structure above 

the pairing gap in the level density curves in 5s957Fe. This step structure is interpreted as 

nucleon pair breaking. The energy that corresponds to the first pair breaking sheds light 
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on the pairing gap and the single-particle level spacing. Breaking more and more nucleon 

Cooper pairs results in a large increase in the entropy. The step structures smooth out 

with increasing excitation energy. 

Another common feature for 56957Fe is that the radiative strengths in both isotopes 

increase anomalously at low y-ray energies. This behavior was not observed in heavy 

nuclei. The experimental strength functions are compared with giant dipole resonance 

models. However, the low-energy effect in the present work cannot be explained by the 

current phenomenological models. Similar enhancements at low y-ray energies are also 

observed in 27928Si and 96997M~ isotopes in similar (3He, cry) and (3He, 3He’y) reactions. 

The calculated radiative strength for 28Si using the known level lifetime data for levels 

up to 10 MeV agrees surprisingly well with the data from the Oslo Cyclotron Laboratory. 

Therefore we believe that this effect is real and is not an artifact of the data reduction, 

and that the low-energy strength is relatively stronger in light- and medium-mass nuclei 

than the corresponding strength in heavy nuclei. The origin of this enhancement remains 

unknown. 

The nuclear level density is closely related to the thermodynamics of the nucleus. 

The level density extracted over a wide range of excitation energies provides information 

on the thermodynamics of 56-57Fe. We considered the energy-temperature relation in 

these isotopes using two different methods: the caloric curves and the probability density 

functions. We obtain the caloric curves in the microcanonical and canonical ensembles and 

show that the caloric curves for small systems are different. Using the probability density 

functions we show that the caloric curves cannot always describe a small system with the 

most probable energy for a given temperature, but sometimes describe the system with 

the locally least probable value. 

The heat capacities for 56*57Fe are obtained within the canonical ensemble. The S 

shape of the heat capacity can be interpreted as a fingerprint of a second-order phase 

transition in these nuclei. The experimental heat capacities are also compared with t h e  

oretical heat capacities obtained in Shell Model Monte Carlo calculations. However, a 

direct comparison cannot be made since the experimental and theoretical heat capacities 
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are derived using the level density and state density, respectively. The difference in the 

experimental and the theoretical values may be due to the uncertainty in the spin cutoff 

parameter. 

7.2 Outlook 

We would next like to investigate the presence of the anomaly in the low-energy 

decay strength by extracting the multiplicity of y rays from different excitation energies. 

If the multiplicity of the y rays is high, this will provide more confidence that y rays with 

low energies are preferred, and that this effect is not an artifact of the subtraction method. 

The extraction method is based on the Axel-Brink hypothesis which uses an energy- 

independent width of the giant dipole resonance. The radiative strength functions are the 

subject of recent investigations. The latest phenomenological models treat the giant dipole 

resonance with an energy and temperature dependent width. More experimental data are 

needed to verify whether or not this description is correct. In that case the extraction 

method should be modified with an improved model of the radiative strength function. 

Improved understanding of the low-energy radiative strength function requires additional 

measurements in light- and medium-weight nuclei. 



h P P E N D l X A I  
Transformat ion Functions 

The experimental normalized primary y a y  matrix P(Ei, E,) provides the y-ray decay 

probability distribution per excitation-energy bin. In Chapter 3, the P(Ei, E,) matrix is 

written as a product of the 7-ray transmission coefficient T and the level density p at the 

final excitation energy according to the Axel-Brink hypothesis 

P(Ei, E,) cx T(E,)P(Ei - E,), 

or more explicitly after normalizing the right-hand side of Eq. A . l  

There are an infinite number of solutions to Eq. A.2. Here we will show that we can 

construct all of the solutions that describe the experimental P(Ei, E,) matrix equally well 

from one arbitrary solution. 

Consider p(Ei - E,) and T(E,) together as one solution. If P(Ei - E,) and P(E,) 

together are another solution given by 
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m,) = T(E,)f(E,), 

then the new p(Ei - E?) and f(E,) should also satisfy Eq. A.2, i.e., 

Thus, 

Substituting ?(E,) and p(Ei - E,) in the last equation gives 

Equation A.7 clearly shows that the product f(E,)g(Ei - E,) is independent of E,, and 

depends only on Ei 

f(E,)9(Ei - E,) = W i ) .  

The condition must hold for Ei = E,. If g(0) = A, then 
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Af(E,) = W,). 

Substituting this into Eq A.8 yields 

f(E,)9(Ei - E,) = A f ( W  (A.lO) 

The condition must also hold for E, = 0, with f(0) = B ,  then Eq. A.10 becomes 

B9(Ei) = Af(J%). 

Inserting this in Eq. A.lO, one gets 

(A.l l )  

The function g can be expanded in a Taylor series in the limit of E, -+ 0. By ignoring 

second and higher terms in the Taylor expansion 

( A  + s/(O)E,)(g(Ez) - 9’(Ei)E,) = AS(E2). 

Again neglecting second-order terms in E, gives 

(A.13) 

Ag’(Ea) = 9l(o)g(Ei). (A.14) 

The approximation in the limit of E, + 0 is valid, because g is a function of only one 
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variable, and we let g depend on Ei instead of E,. We define g’(O)/A = a, and write the 

differential equation 

(A.15) 

Thus the function g has an exponential form 

g(Ei) = AeQEi. (A.16) 

By substituting g into Eq. A.ll,  the other transformation function is obtained as 

f (E i )  = BeQEi. (A.17) 



L B I  
x2 Minimization 

In Chapter 3, the normalized experimental primary y-ray matrix is factorized as a product 

of the y-ray transmission coefficient T and the level density p at the final excitation energy 

as 

P@a, E?) T(E,)p(Ez - E?), (B.1) 

or more explicitly by normalizing the theoretical description of the P(Ei, E,) matrix 

Due to the structure of this equation, there are an infinite number of different solutions. 

In order to find one of the solutions, we apply a least x2 method. In this method the 

reduced x2 is minimized for T(E,) at each 7-ray energy and p(Ei - E,) at each excitation 

energy. The equations obtained from the x2 minimization are not a linear system of 

equations. Therefore, they cannot be solved analytically. However, solving these equations 

numerically is tedious. Thus, an iteration procedure is employed. The iteration starts with 

arbitrary values of T and p, and then calculates new estimates using the values from the 
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previous iteration. Here, we derive the formulae by minimizing the x2 that calculates 

the new estimates of T and p.  The iteration procedure is implemented in a FORTRAN 

program, and continues until the x2 converges. 

The reduced x2 is defined as 

If we substitute P(Ei, ET) into Eq. B.3 

x2 is minimized with respect to T(E,) 

or more explicitly 

N f r e e  is a constant, and therefore, can be taken out of the expression. Taking the square 

of the parenthesis gives 
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Since the last term of Eq. B.7 is independent of T ,  its derivative is zero. Ordering the 

other sums yields 

One can define 

Inserting the last three equations into Eq. B.8 gives 
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wmax 

or writing out the derivatives, 

(B.lO) 

(B.ll) 

The derivatives of the functions a ,  b, and s give 

where 8 is the Heaviside function. Inserting the derivatives in Eq. B.ll  yields 

or 
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Now we can define 

1 

(B.14) 

(B.15) 

Inserting cp and + in Eq. B.14 gives 

The Heaviside function inside the sums requires that Ei 2 E?; therefore Eq. B.16 can be 

rewritten as 

(B.17) 

where m z ( 7 ,  E,) means use whichever is larger E T n  or E,. 

Next x2  as defined in Eq. B.4 is minimized with respect to p(Ei - E,) as follows 

(B.18) 
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or B.10 can be rewritten in terms of p(Ei - ET) 

(B.19) 

For simplicity we call Ei - E-, = Ef  in the following equations. Writing out the derivatives 

explicitly yields 

(B.20) 

The derivatives of the functions a,  b, and s with respect to p ( E f )  give 

Inserting the derivatives in Eq. B.20 yields 

(B.21) 

(B.22) 
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or 

O(Ei - Ef - Ermi") 

(B.23) 

Inserting the definitions for cp and II, in Eq. B.23 gives 

The Heaviside function inside the sums requires that Ei 2 Ef  + E?- , therefore Eq. B.24 

can be rewritten as 



k P P E N D l X C I  
Area Correction for the Primary y-ray 

Spectrum 

The primary y-ray spectrum hi for an excitation-energy bin Ei is obtained from 

where fi is the y-ray spectrum for the bin Ei. The spectrum gi is a sum over weighted 

-pray spectra of all the excitation-energy bins to which the first 7-ray decays, below the 

bin Ei, and is given by 

where n$ accounts for the different cross sections for populating the respective levels, and 

wj is the probability of emitting a y ray from the level Ei to the level Ej. The weighting 

functions are obtained using an iteration procedure described in Chapter 5.  

Ideally the area of the primary y-ray spectrum should be equal to the area of the 

observed spectrum minus the area of the spectrum gi, as given in Eq. C.l. However, the 
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two areas sometimes may not be equal as a result of an improper choice of the weighting 

function w. In that case, we apply an area correction to the spectrum gi 

A ( h )  = A ( f i )  - aA(gi). 

The area A(hi) can be written as 

where Mi is the y-ray multiplicity for the excitation energy Ei, and can be approximately 

calculated as 

where E, is the excitation energy that the statistical cascade enters along the yrast, and 

is the centroid of the average y-ray energy in the unfolded y-ray spectrum. 

By combining Eq. C.3 and C.4 one obtains the correction factor a 

which will be used to multiply the subtracted spectrum 



L D I  
Caloric Curves Derived from Probability 

Density Function 

This appendix is devoted to an idea developed by A. Schiller [82], which may provide 

insight into the investigation of the thermodynamics of small systems. The examples and 

arguments given here aid in the interpretation of the experimental results given in Chap- 

ter 6. Thermodynamics deals with large systems, and is very powerful in describing these 

systems. In a similar manner, thermodynamic quantities have been employed to study 

small systems. However, in this case one cannot make the same approximations as consid- 

ered in the thermodynamic limit. Here some misconceptions in the use of thermodynamic 

quantities for small systems will be addressed. 

Caloric curves in thermodynamics are given by 

as 1 
aE T - -- 

in the microcanonical ensemble and by 

2a1n.Z 
aT 

E = T  - 
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in the canonical ensemble. These two descriptions give the same result if the system 

under study is large. However, for small systems such as atomic nuclei, these formulae 

yield different results. Here, it will be shown that both approaches fail to describe the 

most probable state of the system. Consider the probability density function P(E,  T), 

which is the probability of a system having energy E for a given temperature T and is 

given by 

n ( E )  is the multiplicity of states with energy E and Z(T)  is the canonical partition 

function given by 

For convenience, we use the logarithm of P(E,  T ) .  The most probable energy of the system 

at a given T satisfies the condition 

= 0, 
Oln P(E ,  T )  

aE 

which, after simple manipulations, yields 

where S(E)  = lnR(E) is the entropy. This is known as the caloric curve in the mi- 

crocanonical ensemble. Although we would like to have the most probable value of the 

system, this expression does not always give the most probable value, but sometimes gives 
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the locally least probable value of the system. This is shown below for a simple system. 

Similarly, the necessary condition for the most probable temperature T for a given 

E is 

= 0, 
d In P(E ,  T )  

aT 

which yields 

2 a 1 n 2  E = T  - a T '  

This is the caloric curve in the canonical ensemble. Next it will be shown that these two 

caloric curves give different results for small systems by applying these expressions to a 

simple system. If we assume the multiplicity of states O ( E )  is proportional to En, then 

the caloric curve in the microcanonical ensemble (Eq. D.6) yields 

E = n T  

However, the canonical ensemble (Eq. D.8) gives a different result 

E = (n + l)T. (D.lO) 

It is clear that using either Eq. D.9 or Eq. D.10 does not make a difference in the ther- 

modynamic limit, i.e., when n>l. However, the difference between the two equations can 

be considerable for small systems. An example of this is shown in Fig. D.l for the case 

n =  1. 

The contour lines in Fig. D.l indicate the probability distribution P(E ,T)  as a 
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Figure D.l: Probability density function and caloric curves in micro- 
canonical (dashed line) and canonical (dashed-dotted line) ensembles for 
small systems, in the case of n = 1. 

surface. This can be imagined as the three-dimensional probability distribution P(E,  T) 

projected onto the temperature-energy plane. Thus, each contour line represents equal 

probability. The caloric curves are shown with dashed and dashed-dotted lines for the 

microcanonical and canonical ensembles, respectively. The microcanonical caloric curve 

(MCC) follows the points on the contour lines where the derivative of the distribution 

P(E,T)  with respect to the energy E for a constant temperature is zero, which gives the 

horizontal tangent (see Q. D.5). Similarly, the canonical caloric curve (CCC) follows the 
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Figure D.2: The same as in Fig. D.l for the case of n = 5. 

points on the contour lines where the derivative of the distribution for a constant energy 

is zero, which gives the vertical tangent (see Eq. D.7). It is obvious that the MCC and 

CCC do not agree in the case of n = 1, and that the MCC lies above the CCC. 

For a larger system with n = 5, the distribution P ( E , T )  becomes sharper, and 

as a result both ensembles give more similar curves, as shown in Fig. D.2. A sharper 

distribution means that the energy of the system is more certain for a given temperature. 

In both of these examples a smooth function for the multiplicity of states is consid- 

ered. However, this is not the case in nuclei where, for example, step structures due to 

the breaking of nucleon Cooper pairs are observed in 56957Fe. In the simple model above, 
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Figure D.3: Effect of entropy fluctuations on the caloric curves. 

if a small dip is introduced in the entropy (see the top left panel in Fig. D.3), this will 

result in large fluctuations in the MCC due to the derivative in Eq. D.6 (the top right 

panel), while the CCC averages over the structures due to the Laplace transformation of 

the a ( E )  in l3q. D.4 (the lower left panel). The probability distribution P(E,  T), and the 

two caloric curves are plotted in the lower right panel in Fig. D.3. The dip introduced in 

the entropy results in two maxima in the P(E ,  T ) .  The MCC usually lies above the CCC. 

The two caloric curves cross each other at two points, the first one is a saddle point and 

the second one is a local maximum of P(E,  T). Notice that the MCC not only follows the 

most probable values but also the locally least probable values of the system. The CCC 
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Figure D.4: Probability density function P(E,  T) for 5sFe. 

gives the most probable T for the corresponding E. However, the CCC may sometimes 

describe the system by the least probable values. For example, when the CCC crosses the 

saddle point (the region where the MCC lies below the CCC (see Fig. D.3))) it describes 

the system with the least probable E for the corresponding T. If there are more dips in 

the entropy, the distribution P ( E ,  T )  exhibits more maxima. Our experimental P(E ,  5") 

for 56Fe is an example of such a distribution, as shown in Fig. D.4. 

Based on these arguments, it is difficult to construct a caloric curve for a small 

system. In general caloric curves are constructed by taking the most probable value or 

the mean value of the distribution of energies (temperatures) for a given temperature 

(energy). This procedure gives satisfactory results in the thermodynamic limit since the 

distributions are very sharp. However, for small systems the probability distribution 
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P(E,T)  may be very broad and may exhibit many maxima. Therefore the traditional 

methods to construct caloric curves may not be appropriate for small systems. An attempt 

to describe the system with one specific value of the distribution may result in losing the 

dynamical information about the system. Therefore, new methods for constructing caloric 

curves are needed to describe small systems. 
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